BIOM5200 – Medical Imaging

Electrical Impedance Tomography: Image Algorithms and Applications

Andy Adler
Assistant Professor, SCE, Carleton U
Outline

• Electrical Impedance Tomography
• Applications
• Physics
• Image Reconstruction
• Future Work
Electrical Impedance Tomography

• Relatively new medical imaging technique (early 1990’s)
• Body Surface Electrodes apply current patterns and measure the resulting voltages
• Distribution of conductivity is calculated
EIT: Block Diagram

Medium Ω

Current Source

Imaging System

Data acquisition Controller

Amplifiers
Electrode placement to monitor the lungs and heart

Adult

Preterm infant
EIT: Applications

EIT can image/monitor processes involving movement of conductive fluids and gasses

- Lungs
- Heart / perfusion (blood flow)
- GI tract
- Brain
- Breast
Application: Breathing

Chest images of tidal breathing in normal
Application: Heart Beat

EIT signal in ROI around heart and ECG
Why image lungs?
Respiratory Failure

Inadequate gas exchange by the respiratory system.
Hypoxemia PaO2 < 60 mmHg or Hypercapnia PaCO2 > 45 mmHg

Causes

• Pulmonary dysfunction
 – Asthma, Emphysema, Chronic obstructive airway disease,
 Pneumonia, Pneumothorax, Hemothorax, Acute Respiratory
 Distress Syndrome (ARDS), Cystic Fibrosis

• Cardiac dysfunction
 – Pulmonary edema, Arrhythmia, Congestive heart failure, Valve
 pathology

Treatment
 – Emergency treatment: cardiopulmonary resuscitation.
 – Treatment of the underlying cause is required.
 – Mechanical ventilation may be required.
Mechanical Ventilation

used in acute settings (ICU). Often a life-saving technique, but has many complications
– pneumothorax,
– airway injury,
– alveolar damage,
Accordingly it is generally weaned off or to minimal settings as soon as possible.

Positive pressure in contrast to the more historically common negative pressure ventilators sucking air into the lungs.
Modes of Ventilation

classifications based on how to control the ventilator breath.

• Breath termination
• Breath initiation
• High Frequency Ventilation (HFV)

As microprocessors are incorporated into ventilator design, ventilators use combinations of all modes and flow-sensing
Why image lungs?

A: Normal chest x-ray.
B: Abnormal chest x-ray

shadowing from pneumonia in the right lung
Static Mechanics: ventilation

Stiffer lungs have decreased resting volume (FRC)
Regional ventilation

lung (*left top*) before and after surfactant treatment. An increase in local aeration is accompanied by an increase in electrical impedance; the small fluctuations in the impedance signal represent the individual breaths. For better comparison and identification of instanta-
No change in lower lungs until pressures get really big
Applications: Brain

Applications
- Hemorrhage
- Localization of epileptic foci

Newborn with EIT electrode cap on head
Industrial Applications

Process Tomography
- Fluid/gas flow in pipes
- Metal Castings

Geophysics
- Undersurface geology
- Mine detection
EIT: Advantages

EIT is a relatively low resolution imaging modality, *with several advantages*

- Non-invasive
- Non-cumbersome
- Suitable for monitoring
- Underlying technology is low cost
Non-invasive

Thresholds for cutaneous perception of electric current vs. frequency and EIT system
Hardware: Electrodes

- Current stimulation is better than voltage, because it accounts for electrode contact impedance.
- Traditionally EIT uses adjacent current drive.
- Some systems separate drive and measurement electrodes, using adaptive current patterns.
EIT: Physics

• Within medium Ω there is E and J.

•

\[
J_c = \sigma E
\]

\[
J_d = \varepsilon \varepsilon_o \frac{dE}{dt}
\]

\[
J = (\sigma - j \omega \varepsilon \varepsilon_o)E
\]
EIT: Physics

In the absence of magnetic fields

\[E = -\nabla V \]

No charge build up in conductive medium

We have

\[\nabla \cdot J = -\frac{\partial \rho}{\partial t} = 0 \]

\[\nabla \cdot \left(\sigma - j \omega \varepsilon \varepsilon_0 \right) \nabla V = 0 \quad \text{in} \quad \Omega \]
EIT: Physics

Current is applied at electrodes

\[\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t} = I_e \]

Body need to be grounded, somewhere

\[V = 0 \quad \text{at some point} \]
EIT: Numerical Models

In order to calculate measurements from conductivities, we can use:

• **Analytic Techniques**
 – Analytic models exist for elliptic 3D media; however, numerical approximations of sums required

• **Numerical Models**
 – Finite Element Techniques, main method
Finite Element Models

Simple Model with 64 elements
Used for inverse solution
Finite Element Models

“Simple” 3D Model with 768 elements

Used for inverse solution
Image Reconstruction: Static Imaging

Static imaging reconstructs the absolute conductivity from measurements.

Algorithms:
- Iterative (Newton-Raphson)
- Layer Stripping
Iterative (Absolute) Image Reconstruction

1. Current Injection and EIT data measurement
2. Real Data
3. Does simulation approximate real data?
 - yes: Finished
 - no: Update conductivity distribution
4. Simulation Data

Update conductivity distribution

A. Adler, Mar 2008

Electrical Impedance Tomography
Absolute Imaging Difficulties

- Extremely sensitive to uncertainties in electrode position
 - Need to know where electrodes are to and electrode shape to 1mm
 - “Absolutely” must do 3D
- Numerical instability
- Slow reconstructions
- Is muscle in chest isotropic?
Difference Imaging: Example
Difference Imaging

• Calculate Δ conductivity from Δ measurements

• Inverse problem *linearized*

• reduced sensitivity to electrode and hardware errors.

• Suitable for physiological imaging: lung, heart, GI
Inverse Techniques

- We can pose dynamic imaging as linear inverse, using a sensitivity matrix

\[z_j = \frac{z(\sigma_h) - z(\sigma_h + \delta_j)}{\delta_j} \]

\[z = H\Delta\sigma \]
Inverse Techniques

• Classic least-squares inverse

\[z = Hx \]
\[\hat{x} = \left(H^tH \right)^{-1} H^t z \]
Model based matrix inverses

\[
\begin{bmatrix}
P1 \\
P2 \\
P3 \\
P4 \\
P5 \\
P6 \\
\end{bmatrix} = H \begin{bmatrix}
R1 \\
R2 \\
R3 \\
R4 \\
\end{bmatrix} + b
\]
Matrix Techniques

However, problem is:

- ill-conditioned: measurements depend much more on data near electrodes than in centre
- ill-formed: more unknowns than measurements
Regularized Imaging

Handwaving argument for regularization: used for ill-posed and ill-formed problems to find a solution with:

- **Low error:** small \((z - Hx)\)
- **Stable:** small change in \(x\) for small \(\Delta z\)
- **Good looking:**
 - Somewhat hard to define, but includes smoothness, clean edges, etc.
MAP estimates

• MAP approach says choose x such that $f(x|z)$ is maximized
 – In other words, choose the image that is most likely, considering the measured data

• Bayes Rule

$$f(x|z) = \frac{f(z|x)f(x)}{f(z)}$$
MAP estimates

\(f(z|x) \) the distribution of measurements given an image
- Based on forward model and noise properties

\(f(z) \) distribution of measurements
- Not a parameter of MAP estimate

\(f(x) \) distribution of image
- Based on \textit{a priori} knowledge of physically possible and likely images distributions
Regularized Imaging

Given Linear Model:

\[z = Hx + n \]

Maximum A Posteriori (MAP) estimate is:

\[
\hat{x} = \left(H^t R_n^{-1} H + R_x^{-1} \right)^{-1} \left(H^t R_n^{-1} z + R_x^{-1} x_\infty \right)
\]
Image Reconstruction

- Forward Model (linearized)

\[
\text{Measurements (difference)} = \text{Jacobian} \times \text{Image (difference)} + \text{noise}
\]

System is underdetermined
Image Reconstruction

Regularized linear Inverse Model

Way to introduce “prior knowledge” into solution

Norm weighted by measurement accuracy

Penalty Function

2

A. Adler, Mar 2008 Electrical Impedance Tomography
Regularized Imaging

- Parameters \mathbf{R}_x, \mathbf{R}_n, x_∞, represent *a priori* statistical knowledge of problem

\[
x_\infty = E[\mathbf{x}]
\]
\[
\mathbf{R}_x = E[(\mathbf{x} - x_\infty)^t (\mathbf{x} - x_\infty)] = E[\mathbf{x}^t \mathbf{x}] - x_\infty^t x_\infty
\]
\[
\mathbf{R}_n = E[\mathbf{n}^t \mathbf{n}]
\]
Choice of parameter R_x

- Parameter is a “penalty function”
- Many regularization approaches use a diagonal matrix
 - Tikhonov regularization uses the scaled identity matrix
 - This will penalize large amplitude pixels in image
- We choose a dense matrix
 - Penalize image frequency content above maximum possible with measurements
Regularization: Hyperparameters

Regularizations techniques must finally introduce a “hyperparameter” (µ)

\[\hat{x} = \left(H^t W H + \mu Q \right)^{-1} \left(H^t W z + \mu Q x_\infty \right) \]

where

\[W = \frac{1}{\sigma_n^2} R_n^{-1}, \text{ ie. the relative noise amplitudes} \]

\[Q = \frac{1}{\sigma_x^2} R_x^{-1}, \text{ ie. the relative image correlations} \]
Regularization: Hyperparameters

μ is thus the ratio of image and noise amplitudes,

$$\mu = \frac{\sigma_{x}^2}{\sigma_{y}^2}$$

it can be interpreted as a filter noise figure
Regularized Inverse

Parameters:

- W: models measurement noise
- Q: penalizes image features which are greater than data supports
- X_∞: represents the background conductivity distribution (heart, lungs, etc)
- μ: “hyper-parameter” amount of regularization
Advantages of Regularization

• Stabilizes ill-conditioned inverse
• Introduction of *a priori* information
• Control of *resolution-noise* performance trade-off
• MAP inverse justifies the formulation in terms of Bayesian statistics
Noise – Resolution Tradeoff

Lots of Regularization (large penalty)

Little Regularization (small penalty)

No Noise

-3dB SNR
Applications …

• Electrode Errors
• Electrode Movement
• 3D Imaging / Electrode Placement
• Temporal Filtering
Electrode Measurement Errors

Experimental measurements with EIT quite often show large errors from one electrode

Causes aren’t always clear

– Electrode Detaching
– Skin movement
– Sweat changes contact impedance
– Electronics Drift?
Example of electrode errors

Images measured in anaesthetised, ventilated dog

A. Image of 700 ml ventilation
B. Image of 100 ml saline instillation in right lung
C. Image of 700 ml ventilation and 100 ml saline
Measurements with “bad” electrode

* “bad” measurement

X measurement at current injection
“Zero bad data” solution

“Traditional solution” (in the sense that I’ve done this)

Error Here
Replace With zero

\[
\begin{pmatrix}
\sigma_1^{-2} \\
\sigma_2^{-2} \\
\sigma_3^{-2} \\
\sigma_4^{-2}
\end{pmatrix}
\times
\begin{pmatrix}
2
\end{pmatrix}
\]
Regularized imaging solution

Electrode errors are large measurement noise on affected electrode
Simulation

Data simulated with 2D FEM with 1024 elements – not same as inverse model

Small targets simulated at different radial positions

Position in % of medium diameter

“Bad” Electrode
Simulation results for opposite drive

No Electrode Errors

Zero Affected Measurements

Regularized Image
How does this work with real data?

A. Image of 700 ml ventilation
B. Image of 100 ml saline instillation in right lung
C. Image of 700 ml ventilation and 100 ml saline
Electrode Movement

Electrodes move
- with breathing
- with posture change

Simulations show broad central artefact in images
Imaging Electrode Movement

• Forward model image includes movement

\[\text{Jacobian} \times \text{measurement change due to movement} + \text{noise} \]
Images of electrode movement

Simulation: tank twisted in 3D
Top slice

Middle slice

Bottom slice

Simulation Standard Algorithm with electrode movement

A. Adler, Mar 2008 Electrical Impedance Tomography
EIT makes fast measurements. Can we use this fact?

\[
\begin{array}{cccccc}
-2 & -1 & 0 & +1 & +2 & +n \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Measurement} \\
\text{sequence} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{Image sequence} \\
\text{past} & \text{now} & \text{future} \\
-2 & -1 & 0 & +1 & +2 & +n \\
\end{array}
\]

\[
\begin{array}{c}
= \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{Jacobian} \\
\end{array}
\]
Temporal Reconstruction

Temporal Penalty Functions

likely

quite likely

unlikely

Standard EIT approaches to not take this into account
GN vs. Temporal Inverse

1. Noise free data (IIIRC tank)
2. Data with added 6dB SNR noise

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Temporal solver
(4 time steps)
Solve time = 34.81 s
(with caching) = 0.60 s
Gauss Newton vs. Temporal Inverse (6db SNR)

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Temporal solver
(4 time steps)
Solve time = 34.81 s
(with caching) = 0.60 s