Information content of EIT measurements

Andy Adler¹, Bill Lionheart²

¹Carleton University, Ottawa, Canada ²University of Manchester, U.K

Question:

□ How much information is in a frame of EIT measurements?

Abbreviation: IM = Information in measurements

Motivations: measure IM?

- Regularization adds 'prior information' to the image
 - Can we understand and measure this information?

Definition: Information in Measurements (IM):

the decrease in uncertainty about the contents of a medium, due to a set of measurements.

Example: measure *Height*

Measure #1 (at doctor's office, ie. accurate)
 Measure #2 (via telescope, ie. inaccuate)

Example: measure *Height*

□ How much MI (how distinguishable)?

	Average	Tall
	(5½′ tall)	(6½' tall)
Measure #1	Low	Quite a lot
Measure #2	Almost zero	Low

Kullback-Leibler divergence (KLD) information gain: $q(y) \Longrightarrow p(y)$

Prior Posterior Distribution Distribution \Box or the "extra bits" of information needed to represent p(y) wrt q(y)

$$D(p||q) = \int_{\mathbf{y}} p(\mathbf{y}) log_2 \frac{p(\mathbf{y})}{q(\mathbf{y})} d\mathbf{y}$$

Adler and Lionheart, Information Content of EIT Measurements

IM for height

Example: Impedance Plethysmography

To estimate prior, measure data on several patients

Assume:
$$\mu_q = 0, \sigma_q = 800 mV$$

□ On a specific patient ■ Measurement = 1.0V, Noise: σ_n = 10mV □ KLD is

$$log_2 \frac{\sigma_q}{\sigma_p} + \left(\frac{\mu_q - \mu_p}{\sigma_q}\right)^2 + \left(\frac{\sigma_p}{\sigma_q}\right)^2 - 1 = 7.9$$
 bits

Considerations

- Multi-channel measurements in EIT
 - Measurements are correlated
- Real distributions are hard to model
 Approxiate as Gaussian
- Some signals are more likely than others, but IM should measure avg.

$$IM = \mathop{E}_{q} \left[D(p \| q) \right]$$

Formula page ... $\Box \text{ Thus, IM} = \frac{1}{2} \log_2 |\Sigma_q \Sigma_p^{-1}| + tr \left(\Sigma_p \Sigma_q^{-1} \right),$ When signal>noise When noise>signal, ignore

D EIT:
$$\mathbf{y} = \mathbf{J}\mathbf{x} + \mathbf{n}$$

 $\Sigma_q = \mathbf{J}\Sigma_x \mathbf{J}^T + \Sigma_n$
 $\Sigma_p = \Sigma_n$

D For EIT:
IM =
$$\frac{1}{2}log_2 |\mathbf{J}\boldsymbol{\Sigma}_x\mathbf{J}^T\boldsymbol{\Sigma}_n^{-1} + \mathbf{I}|$$

More formulae ...

Practically, an image reconstruction algorithm has

- Noise model: independent noise
- Reconstruction prior: R

IM for sample EIT system

Signal: golf ball in 30cm diameter tank

Number of independent measurements (via PCA)

IM for sample EIT system

\Box IM from system = 245.1 bits

□ This value is less than $n_N log_2 SNR = 406.3 bits$ (value for independent measurements)

\Box As λ increases, IM increases

Motivations: measure IM?

- Distinguishability may be defined in terms of the IM content from small contrasts
- □ Optimal current patterns may be defined in terms of maximizing IM.

Motivations: measure IM?

- Fusion of EIT with other modalities.
 - Measurements which are not independent will only add a small increment to the IM from EIT.
- Inherent limits to the compressibility of measured data.
 - Measured data cannot be stored in less space than IM.