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Biometric Template Uniqueness

Question to be answered: “How secure is the
certain biometric system?”

Possible approach: Measurement of amount
of information contained in a person’s
characteristic

Thesis objective: measurement of information
for identification in irises




Biometric Sample Quality Assessment

Lower quality results in lesser amount of identifying information

Humans are traditionally believed to be the best quality
evaluators

How reliable is this assumption?

Quality measuring experiments :
* 8 participants
* 7 identification algorithms

Data sets :
* 84 iris images
* 98 face images



‘ Quality Assessment by Participants

3 Image Quality Assessment - Microsoft Internet Explorer
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Automatic Quality Assessment
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Quality Evaluation - Results

Are humans consistent with each other?
YES

Are algorithms consistent with each other?
YES

Are humans consistent with algorithms or other
quality measures?

NO



‘ Quality Evaluation — Results (cont.)
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Discrimination Entropy Approach by
Daugman

Assumption:
match score distribution ~ binomial distribution
Degrees of freedom of the observed distribution:

Binomial Distribution of IrisCode Hamming Distances
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Relative Entropy Approach by Adler et al.

Biometric information: “decrease in uncerainty about the
identity of a person due to a set of biometric
measurements”

Dp |l q):
a2 p - one person feature distribution

< q - population feature distribution
2 preferable over H

Assumption: feature values have Gaussian distribution



Experimental Setup

= Dataset:
2 obtained using L.G. iris camera
0 12 eyes, 30 samples each

= Software:
2 Masek and Kovesi (2003)
2 open-source iris recognition software




Discrimination Entropy:

Experimental Results
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Discrimination Entropy:
Statistical Analysis

Discrimination entropy vs. H(p)

Procedure:

2 Define a template as a binary string of length M
2 Assign a probability to each template (2Vvalues)
0 Calulate H(p) of the template

0 Calculate HD distribution and fit the binomial
curve

0 Compare the results



Discrimination Entropy:
Statistical Analysis - Scheme 1
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Discrimination |

HNtropy:

Statistical Analysis - Scheme 2

Templates with varying dependencies between their bits
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Relative Entropy: Feature Entropy
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Relative Entropy: Iris Template Entropy
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‘ Relative Entropy: Iris Template Entropy
(cont.)
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Relative Entropy: Iris Region Entropy
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‘ Relative Entropy: Iris Region Entropy
(cont.)
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Conclusion

Discrimination entropy:
3 too idealistic
0 does not measure identification information

Relative entropy:

20 more appropriate measure of biometric
information

2 the most informative: inner circles closer to the
pupll
0 converges due to neighbor pixel dependencies



Thank youl

Questions?




