Measurement of the information for identification in iris images

Tatyana Dembinsky

SITE, University of Ottawa

Overview

- Thesis objective
- Biometric sample quality evaluation
- Measuring biometric information
 - Approach by Daugman
 - Approach by Adler et al.
- Experimental work
- Conclusion

Biometric Template Uniqueness

- Question to be answered: "How secure is the certain biometric system?"
- Possible approach: Measurement of amount of information contained in a person's characteristic
- Thesis objective: measurement of information for identification in irises

Biometric Sample Quality Assessment

- Lower quality results in lesser amount of identifying information
- Humans are traditionally believed to be the best quality evaluators
- How reliable is this assumption?

<u>Quality measuring experiments :</u>

- 8 participants
- 7 identification algorithms

Data sets :

- 84 iris images
- 98 face images

Quality Assessment by Participants

Automatic Quality Assessment

$$MS_{i,j} = Q_i Q_j \qquad \begin{array}{c} 0 < MS < 1 \\ 0 < Q < 1 \end{array}$$

Quality Evaluation - Results

Are humans consistent with each other? YES

Are algorithms consistent with each other? YES

Are humans consistent with algorithms or other quality measures?

NO

Quality Evaluation – Results (cont.)

Best Irises

Worst Irises

Discrimination Entropy Approach by Daugman

Assumption:

match score distribution ~ binomial distribution

Degrees of freedom of the observed distribution:

Relative Entropy Approach by Adler et al.

- Biometric information: "decrease in uncerainty about the identity of a person due to a set of biometric measurements"
- D(p || q) :
 - p one person feature distribution
 - q population feature distribution
 - preferable over H
- Assumption: feature values have Gaussian distribution

Experimental Setup

Dataset:

- obtained using L.G. iris camera
- 12 eyes, 30 samples each

Software:

- Masek and Kovesi (2003)
- open-source iris recognition software

Discrimination Entropy: Experimental Results

Discrimination Entropy: Statistical Analysis

- Discrimination entropy vs. H(p)
- Procedure:
 - Define a template as a binary string of length M
 - □ Assign a probability to each template (2^M values)
 - Calulate H(p) of the template
 - Calculate HD distribution and fit the binomial curve
 - Compare the results

Discrimination Entropy: Statistical Analysis - Scheme 1

Differently scattered probabilities

Discrimination Entropy: Statistical Analysis - Scheme 2

Templates with varying dependencies between their bits

Relative Entropy: Feature Entropy

Pupil

Relative Entropy: Iris Template Entropy

Relative Entropy: Iris Template Entropy (cont.)

Higher information content

Lower information content

Relative Entropy: Iris Region Entropy

Relative Entropy: Iris Region Entropy (cont.)

Conclusion

- Discrimination entropy:
 - too idealistic
 - does not measure identification information
- Relative entropy:
 - more appropriate measure of biometric information
 - the most informative: inner circles closer to the pupil
 - converges due to neighbor pixel dependencies

Questions?