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Overview

• Methods for sharp changes

• Linear sampling/factorization

• Levelset

• Monotonicity

• Total variation

• Primal-Dual Interior Point method

• Implementation in EIDORS and results
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Methods for Sharp changes

Tradition reconstruction methods for EIT include a regularization term that penalizes
sharp changes. Put a different way they assume a prior distribution where smooth
conductivity images are more likely. By contrast CT and MRI images show that material
properties in the human body tend to have sharp changes between different anatomical
structures.
Can EIT see sharp changes? Yes, in some circumstances sharp changes are easier to
detect with EIT than smooth changes. However illconditioning and error in data mean
that one might not be able to distinguish between sharp and smooth.
There are numerous approaches to recovering discontinuous conductivites in EIT, and
we believe they merit the attention of the medical EIT community so will review some of
them here. We go on to discuss the Primal-Dual Interior Point method applied to Total
Variation (TV) regularization, which we believe is particularly important in medical EIT
where we encounter both sharp changes and smooth gradations of conductivity.

Reconstruction of conductivities with jump changes – p.3/33



Methods for finding jump discontinuities

While Total Variation is good for multi-component mixtures, and sharp changes while
also allowing for gradients it is computationally expensive. Where only the boundary
between regions of constant conductivity (two or more “phases”) is needed there are
several methods to detect the discontinuity.

• Monotonicity method of Tamburrino and Rubinacci. Used for two component
mixtures where properties of components known. Requires measurements at
driven electrodes not taken by all EIT. Fast and direct requiring only eigenvalues of
trans-impedance matrices.

• Shape reconstruction . When the boundaries between phases are known to be
smooth shape based methods such as level sets are useful. An iterative method
but typically fewer parameters need than “imaging” methods.

• Linear sampling and Factorization methods are useful for detecting jump changes.
Relatively large number of measurements needed and voltage on driven
electrodes assumed known. Fast and direct.
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Monotonicity

The monotonicity method of Tamburrino and Rubinacci[33] relies on the observation that
if one conductivity is everywhere greater than another σ1 < σ2 then the
trans-conductance matrices will satisfy Λσ1

< Λσ2
, where the inequality is defined by

Λσ2
− Λσ1

being positive definite.
The contra-positive of this is that a non-positive eigenvalue of Λσ2

− Λσ1
means that

σ1 6< σ2.
This test is especially useful when the conductivity is assumed to take one of two values
σm < σM on each pixel (or voxel). One precomputes a test trans-conductance ΛMk for
a conductivity of σM on the kth pixel and σm elsewhere. If the measured
trans-conductance Λσ is such that Λσ − ΛMk has a negative eigenvalue then we know
the kth pixel cannot have conductivity σM so must be σm. Unfortunately the difference
being positive definite does not imply the pixel has conductivity σM , in that case the test
is inconclusive.
The procedure is repeated using test trans-conductance matrices Λmk for a conductivity
of σm on the kth pixel and σM elsewhere. This results in two disjoint subsets of pixels
ΩM that definitely have conductivity σM and Ωm that definitely have conductivity σm.
There may be a set of pixels that are not determined depending on the number and size
of electrodes and the number of pixels.
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Monotonicity continued

Complexity

For an N electrode and K pixel system the algorithm requires 2K (N − 1) × (N − 1)

matrices to be tested for a negative eigenvalue. So far implementations have calculated
all the eigenvalues each of which is an operation with complexity O(N − 1)3. This can
be reduced if the aim is only an estimate of the smallest eigenvalue sufficiently accurate
to determine if it is negative. The algorithms has the advantage that it can be efficiently
parallelized on up to 2K processors each with modest memory requirements and
without a communications overhead.
Measurement accuracy

With practical measurements one needs to test that the smallest eigenvalue is
sufficiently negative to be conclusive. See[33, 34]. An example is given the eigenvalues
λj of the difference between trans-conductance matrices to consider the sign index
s =

P

j λj/
P

j |λj | and the test is then s < 1− ǫ for some small ǫ. Of course we will still
have more pixels unknown as accuracy decreases.
Complex admittivity

The method is known to work for purely real or purely imaginary admittivity but has so far
been extended to the complex admittivity or multifrequency data.
MCMC Recent work uses Markov-Chain Monte Carlo method to resolve the conductivity
of the unknown pixels [3].
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Shape Reconstruction

The shape reconstruction approach parameterizes the curves (or in 3D surfaces) of
discontinuity in a piece-wise constant conductivity.
Typically parametrization of smooth curves (surfaces) requires fewer parameters,
consequently the non-linear fitting problem is less costly computationally and can be
better conditioned. Two approaches have emerged to parametrization these internal
boundaries. The level set approach, first suggested in EIT by Santosa [28], and recently
developed by Dorn et al[16][31]. Another approach taken by Kolehmainen et al
parameterizes internal boundaries using smooth functions such as Fourier
series [21][22].
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Level set reconstruction

3D Level set reconstruction, simulated data from Soleimani Lionheart and Dorn[31]

Electrodes for 3D simulation

True image level set solution True image level set solution

True image level set solution True image level set solution
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Level set 2D tank data

2D Level set reconstruction compared with Tikhonov Regularized Gauss-Newton from Soleimani
Lionheart and Dorn[31]

True Gen Tik Gauss-Newton Level set
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Linear Sampling or Factorization

“Linear Sampling" or “Factorization” methods were developed originally for inverse
scattering problems. They provide a direct method of finding the jump discontinuities of
in a piecewise constant conductivity from boundary measurements and have been
applied to EIT by Hanke and Bruhl [9, 17]
In common with the monotonicity points in the domain are tested to see if they are inside
“inclusions”, and each test involves calculation of eigenvalues of an operator on the
boundary. More specifically for each point z in the domain hz is the potential on the
boundary due to a dipole source at z with zero Neumann condition. In the factorization
method one tests if hz at the boundary is in the range of the operator (R − R1)1/2

where R is the trans-resistance measured at the boundary (Neumann-Dirichlet map) and
R1 is the trans-resistance for the homogeneous case. It is in the range if and only if z is
in the inclusion.
The test to see if hz is in the range is essentially the discrete Picard criterion. Let vk be
the eigenfunctions of R − R1 and λk the eigenvalues then h is in the range if and only if

∞
X

k=1

λ−1

k 〈h, vk〉 < ∞

“Linear sampling” means the same test without the power 1/2 of the operator, in this
case implication is one way.
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Factorization:Numerical studies

Bruhl and Hanke[9] tested factorization method on 2D data from RPI’s ACT3 system, Schappel[30]
also reported tests on half-plane experiemntal data. The reconstruction code of Bruhl is available as
an on-line Java (adapted for the web by B. Gebauer) as GEIT [18]. Here are some sample results.

Try it yourself at http://www.numerik.mathematik.uni-mainz.de/geit
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Factorization:GEIT numerical studies cont
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Factorization:GEIT numerical studies cont
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Factorization:GEIT numerical studies cont
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Factorization:GEIT numerical studies cont

Full reconstruction with no noise

Reconstruction of conductivities with jump changes – p.15/33



Factorization:GEIT numerical studies cont

Full reconstruction with noise
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Factorization method: comments

• Factorization method should work as well in 3D, a student of Hanke is working on it
for experimental data.

• The method appears to need the diagonal of R, that is voltages on current carying
electrdodes. It can still work with other data missing.

• Like monotonicity it is a fast direct method, full 3D data cost of calculating
eigensystem increases but this can be alleviated by using multiple processors.

• Systematic approaches to regularization need to be considered.
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TV – the idea

Let F (σ) = V be the forward problem the a typical regularization method is to solve

min
σ

`

‖V − F (σ)‖2 + G(σ)
´

for a penalty function G. In generalized Tikhonov regularization G(σ) = α2‖L(σ − σ0)‖2

for a differential operator L. The penalty term is smooth so standard (eg Gauss-Newton)
optimization will work fine. This regularization incorporates the a priori information that
the conductivity is smooth.
The Total Variation functional G(σ) = α‖∇(σ − σ0)‖ still prevents wild fluctuations in σ

but allows step changes. The optimization is now of a non-smooth function as G is not
differentiable at σ = σ0. An efficient method for solving this is the Primal Dual Interior Point

Method . This method tracks a solution between a primal and dual problem avoiding the
singularity. It is still more computationally costly than Gauss Newton for a smooth
penalty.
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What TV measures

Total variation measures the total amplitude of the oscillations of a function. For a
differentiable function on a domain Ω the total variation is [15]

TV (f) =

Z

Ω

|∇f | (1)

The definition can be extended to non–differentiable functions as:

TV (f) = sup
v∈V

Z

Ω

f divv (2)

where V is the space of continuously differentiable vector-valued functions that vanish on
∂Ω and ‖v‖Ω ≤ 1.
As the TV functional measures the variations of a function over its domain, it can be
understood to be effective at reducing oscillations in the inverted profile, if used as a
penalty term. The same properties apply however to ℓ2 regularisation functionals. The
important difference is that the class of functions with bounded total variation also
includes discontinuous functions, which makes the TV particularly attractive for the
regularisation of non–smooth profiles.
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Simple TV example

The following one-dimensional example illustrates the advantage of using the TV against
a quadratic functional in non-smooth contexts. Let
F = {f : [0, 1] → R, | f(0) = a, f(1) = b}, we have min

f∈F

R

1

0
|f ′(x)|dx is achieved by

any monotonic function, including discontinuous ones. min
f∈F

R

1

0
(f ′(x))2dx is achieved

only by the straight line connecting the points (0, a) (1, b).

( 0 , a )

( 1 , b )

f 1 ( x )

f 2 ( x )
f 3 ( x )

The figure shows three possible functions f1, f2, f3 in F . All of them have the same total
variation, including f3 which is discontinuous. Only f2 however minimises the H1

semi–norm |f |H1
=

“

R

1

0
(f ′(x))2 dx

”1/2

. The quadratic functional, if used as penalty,

would therefore bias the inversion toward the linear solution and the function f3 would
not be admitted in the solution set as its H1 semi-norm is infinite.
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TV details cont

• Dobson and Santosa [?] suitable for the linearised problem and suffers from poor
numerical efficiency.

• Somersalo et. al. [32] and Kolehmainen et. al. [23]. MCMC methods to solve the
TV regularised inverse problem. Do not suffer from problems resulting from
non-differentiability of the TV functional.

• Borsic [6, 5] applied Primal Dual Interior Point Method (PD-IPM) to TV regularized
2D EIT. Generalized to 3D in[24], and now partially incorporated in EIDORS.

Reconstruction of conductivities with jump changes – p.21/33



Primal and Dual problems

In inverse problems, with linear forward operators, the discretised TV regularised inverse
problem, can be formulated as

(P ) min
x

1

2
‖Ax − b‖2 + α‖Lx‖ (3)

where L is a discretization of the gradient operator. We will label it as the primal
problem. A Dual problem to (P), which can be shown to be equivalent [5] is

(D) max
y:‖y‖≤1

min
x

1

2
‖Ax − b‖2 + αyT Lx (4)
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PD cont

The optimisation problem

min
x

1

2
‖Ax − b‖2 + α y

T
Lx (5)

has an optimal point defined by the first order conditions

A
T

(Ax − b) + α L
T
x = 0 (6)

the dual problem can be written therefore as

(D) max
y : ‖y‖ ≤ 1

AT (Ax − b) + α LT y = 0

1

2
‖Ax − b‖

2
+ α y

T
Lx (7)
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PD cont

The complementarity condition for ?? and ?? is set by nulling the primal dual gap

1

2
‖Ax − b‖2 + α ‖Lx‖ −

1

2
‖Ax − b‖2 − αy

T
Lx = 0 (8)

which with the dual feasibility ‖y‖ ≤ 1 is equivalent to requiring that

Lx − ‖Lx‖y = 0
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PD cont

The PD-IPM framework for the TV regularised inverse problem can thus be written as

‖y‖ ≤ 1 (9a)

A
T

(Ax − b) + α L
T
y = 0 (9b)

Lx − ‖Lx‖y = 0 (9c)
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PD cont

It is not possible to apply the Newton Method directly to (??) as (??) is not differentiable for Lx = 0. A
centering condition has to be applied, obtaining a smooth pair of optimisation problems (Pβ ) and (Dβ )

and a central path parameterised by β. This is done by replacing ‖Lx‖ by (‖Lx‖2 + β)
1
2 in (??).
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Application to EIT

The PD-IPM algorithm in its original form [10] was developed for inverse problems with
linear forward operators. The following section (based on [5]) describes the numerical
implementation for EIT reconstruction. The implementation is based on the results of the
duality theory for inverse problems with linear forward operators. Nevertheless it was
possible to apply the original algorithm to the EIT inverse problem with minor
modifications, and to obtain successful reconstructions. The formulation for the EIT
inverse problem is

srec = arg min
s
f(s)

f(s) = 1

2
‖F (s) − Vm‖2 + α TV (s)

(10)
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PD cont

The system of non–linear equations that defines the PD–IPM method for (??) can be written as

‖y‖ ≤ 1

JT (F (s) − Vm) + α LT y = 0

Ls − Ey = 0

(11)

with E =
p

‖Ls‖2 + β, and J the Jacobian of the forward operator F (s). Newton’s method can be
applied to solve (??) obtaining the following system for the updates δs and δy of the primal and dual
variables

"

JT J α LT

EL −E

# "

δs

δy

#

= −

"

JT (F (s) − b) + α LT y

Ls − Ey

#

(12)

with

h = 1 −
yL s

E
(13)
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PD cont

which in turn can be solved as follows

[JT
J + α L

T
E
−1

hL] δs = −[JT (F (s) − b) + α L
T

E
−1

L s] (14a)

δy = −y + E
−1

Ls + E
−1

hL δs (14b)

Equations (??) can therefore be applied iteratively to solve the non–linear inversion (??). Some care
must be taken on the dual variable update, to maintain dual feasibility. A traditional line search
procedure with feasibility checks is not suitable as the dual update direction is not guaranteed to be
an ascent direction for the penalised dual objective function (Dβ). The simplest way to compute the
update is called the scaling rule [2] which is defined to work as follows

yk+1 = λ(yk + δyk) (15)

where
λ = max{λ : λ‖yk + δyk‖ ≤ 1} (16)
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3D EIT smooth example

Original smooth con-
ductivity projected on
courser

Smoothly regularized
Gauss-Newton recon-
struction

TV regularized PD-IPM
reconstruction

Reconstruction of a smooth conductivity using a smooth regularization penalty function
using Smooth and TV regularization.
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3D EIT discontinuous example

Two spheres test object

Tikhonov reg. GN reconstruction TV reconstruction.
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2D TV reconstruction - tank data

As a preliminary test of the PDIP-TV implementation in EIDORS David Stephenson
(University of Manchester) compared a single iteration of Generalized Tikhonov
regularized Gauss-Newton with a PDIP TV applied to the linearized problem. The data
was collected on the ITS ERT system. Although the data collection was 2D – a limitation
of the system, a 3D reconstruction algorithm was used.
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2D TV reconstruction - results

Tikhonov reg. GN reconstruction

TV reconstruction.
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[17] Hanke M, Brühl M, 2003, Recent progress in electrical impedance tomography, Inverse Problems, 19, S65-S90

[18] Hanke M and B. Gebauer http://www.numerik.mathematik.uni-mainz.de/geit

[19] Hettlich F and Rundell W, 1998 The determination of a discontinuity in a conductivity from a single boundary measure-

ment Inverse Problems 14 67-82

[20] Ki H and Shen D, 2000, Numerical inversion of discontinuous

[21] Kolehmainen K, Arridge SR, Lionheart WRB, Vauhkonen M and Kaipio JP, 1999, Recovery of region boundaries of

piecewise constant coefficients of elliptic PDE from boundary data, Inverse Problems 15, 1375-1391

[22] Kolehmainen V, Vauhkonen M, Kaipio JP and Arridge SR, 2000, Recovery of piecewise constant coefficients in optical

diffusion tomography, Optics Express 7, 468-480.

[23] Kolehmainen V, 2002, Novel Approaches to Image Reconstruction in Diffusion Tomography. PhD thesis, Department of

Applied Physics Kuopio University.

[24] Lionheart W, Polydordes N and Borsic A, The reconstruction problem, Part 1 of Electrical Impedance Tomography:

Methods, History and Applications, (ed) D S Holder, Institute of Physics, p3-64, 20 and J. Newell, IEEE Trans. Biomed.

Engineering, 46, 1379-1386.

[25] Polydorides N and Lionheart WRB, 2002, A Matlab toolkit for three-dimensional electrical impedance tomography: a

contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project, Meas. Sci. Technol. 13

1871-1883

[26] Rondi L, Santosa F, Enhanced electrical impedance tomography via the Mumford-Shah functional, preprint.

[27] Rudin LI, Osher S, and Fatemi E, 1992, Nonlinear total variation basednoise removal algorithms. Physica D, 60, 259-

268.

[28] Santosa F, 1995, A level-set approach for inverse problems involving obstacles, ESAIM Control Optim. Calc. Var. 1

(1995/96) 17-33

[29] Santosa F, Vogelius M, 1991, A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50,

216-243

[30] Schappel B, 2003, Electrical Impedance Tomography of the Half Space: Locating Obstacles by Electrostatic Measure-

ments on the boundary, Proceedings of the 3rd World Congress on Industrial Process Tomography, Banff, Canada,

September 2-5, 788-793.

[31] M. Soleimani, W.R.B. Lionheart, O. Dorn Level set reconstruction of conductivity and permittivity from boundary electri-

cal measurements using experi mental data, Inverse Problems in Science and Engineering Vol 14 No 2, pages 193-210

, March 2006

33-2



[32] Somersalo E, Kaipio JP, Vauhkonen M, and D. Baroudi D. 1997 Impedance imaging and Markov chain Monte Carlo

methods. Proc. SPIE’s 42nd Annual Meeting, pages 175-185.

[33] Tamburrino A, Rubinacci G, 2002, A new non-iterative inversion method in electrical resistancetomography, Inverse

Problems, 18, 2002

[34] Tamburrino A, G Rubinacci G, M Soleimani M, Lionheart WRB Non Iterative Inversion Method for Electrical Resistance,

Capacitance and Inductance Tomography for Two Phase Materials, Proceedings of the 3rd World Congress on Industrial

Process Tomography,Banf, Canada, 2nd-5th Sept 2003, p233-238

[35] Vogel. C, 2001, Computational methods for inverse problems (Philadelphia: SIAM).

[36] Wade JG, Senior K and Seubert S, 1996 Convergence of Derivative Approximations in the Inverse Conductivity Problem,

Bowling Green State University, Technical Report No. 96-14 Madison, Wisconsin.

[37] Xue G and Ye Y, 2000,. An efficient algorithm for minimizing a sum ofp-norms. SIAM J. on Optimization, 10, 551-579.

33-3


	Overview
	Methods for Sharp changes
	Methods for finding jump discontinuities
	Monotonicity
	Monotonicity continued
	Shape Reconstruction
	Level set reconstruction
	Level set 2D tank data
	Linear Sampling or Factorization
	Factorization:Numerical studies
	Factorization:GEIT numerical studies cont
	Factorization:GEIT numerical studies cont
	Factorization:GEIT numerical studies cont
	Factorization:GEIT numerical studies cont
	Factorization:GEIT numerical studies cont
	Factorization method: comments
	TV -- the idea
	What TV measures
	Simple TV example
	TV details cont
	Primal and Dual problems
	PD cont
	PD cont
	PD cont
	PD cont
	Application to EIT
	PD cont
	PD cont
	3D EIT smooth example
	3D EIT discontinuous example
	2D TV reconstruction - tank data
	2D TV reconstruction - results

