Electrical Impedance Tomography for Deformable Media

Mr. Camille Gómez-Laberge

M.A.Sc. Electrical Engineering Candidate
School of Information Technology & Engineering
University of Ottawa

November 9th, 2006
Outline

• Electrical impedance tomography
• Image variability from boundary deformation
• Electrode displacement regularization
• Imaging of deformable media
• Conclusion
Electrical impedance tomography

EIT for deformable media

C. Gómez-Laberge, 2006
Electrical impedance tomography

internal conductivity

EIT for deformable media
Electrical impedance tomography

applied current

internal conductivity

EIT for deformable media
Electrical impedance tomography

internal conductivity

boundary voltage

applied current

EIT for deformable media
Electrical impedance tomography

- inverse problem
 - non-linear
 - unstable
 - not unique

boundary voltage

internal conductivity

EIT for deformable media

C. Gómez-Laberge, 2006
Electrical impedance tomography

Inverse solution

1. Discretize

2.

3.

Boundary voltage

Internal conductivity

EIT for deformable media

C. Gómez-Laberge, 2006
Electrical impedance tomography

inverse solution
1. discretize
2. linearize
3.

boundary voltage

internal conductivity

\[\text{boundary voltage} \times f(J) = \text{internal conductivity} \]
Electrical impedance tomography

inverse solution
1. discretize
2. linearize
3. regularize

$\mathbf{V} = \mathbf{f}(\mathbf{J}, \mathbf{R})$

boundary voltage
internal conductivity
Boundary deformation

The body is soft and is always in motion

- body motion causes EIT errors because:
 - the boundary deforms
 - the electrodes move

- monitoring may require movement e.g., breathing to monitor lung ventilation
Boundary deformation

adapted from http://www.brendoman.com/media/ (Oct. 12, 2006)
A study of deformation

Simulated EIT measurements to determine how much error is introduced from
1. boundary deformation
2. electrode displacement along boundary

• analysed results by
 1. inspection
 2. error measurement
Boundary deformation

forward model

C. Gómez-Laberge, 2006

EIT for deformable media
Boundary deformation

Correct

Incorrect

EIT for deformable media

C. Gómez-Laberge, 2006
Boundary deformation

Electrodes moved by approx. 1.50 cm

correct

incorrect

EIT for deformable media

C. Gómez-Laberge, 2006
Boundary deformation

Conductivity Variation vs. Number of Misplaced Electrodes

- Image error (conductivity variation %)
- # of electrodes shifted

- 3.00 cm
- 2.25 cm
- 1.50 cm
- 0.75 cm

EIT for deformable media
Displacement regularization

The proposed solution includes an electrode displacement parameter into the inverse problem:

• define the system model

• define the augmented regularization matrix

• define the augmented Jacobian matrix
Displacement regularization

boundary voltage

internal conductivity

image

\(\text{EIT for deformable media} \)

C. Gómez-Laberge, 2006
Displacement regularization

boundary voltage

internal conductivity

electrode displacement

v

image

x
Displacement regularization

\[x = f(J, R) v \]

\[x = (J^T J + \lambda^2 R)^{-1} J^T v \]
Displacement
regularization

Building R -- *a priori* claims

- conductivity distribution is smooth
- adjacent electrode displacements are correlated
Displacement regularization

EIT for deformable media

C. Gómez-Laberge, 2006
Displacement regularization

EIT for deformable media
Displacement regularization

EIT for deformable media

C. Gómez-Laberge, 2006
Displacement regularization

EIT for deformable media
Displacement regularization

elements

elements

electrodes

electrodes

elements

electrodes

elements

electrodes

EIT for deformable media

C. Gómez-Laberge, 2006
Displacement regularization

EIT for deformable media
Displacement regularization

\[R = \begin{bmatrix} \mu^2 & 0 \\ 0 & 0 \end{bmatrix} \]
Displacement regularization

Building J -- sensitivity to input change
- conductivity change will affect boundary voltage
- displacements will affect boundary voltage
Displacement regularization

elements

electrodes
Displacement regularization

\[
\frac{\partial v}{\partial \sigma} \approx \frac{v(\sigma + \Delta \sigma) - v(\sigma)}{\Delta \sigma}
\]

electrodes

elements

EIT for deformable media
Displacement regularization

\(\frac{\partial v}{\partial \sigma} \quad \text{elements} \)

\(\frac{\partial v}{\partial r} \quad \text{electrodes} \)

EIT for deformable media

C. Gómez-Laberge, 2006
Displacement regularization

\[J = \]
Algorithm performance

Results of a comparison to the standard algorithm
• no change in position accuracy
• marginal improvement in image resolution
• large improvement in artefact reduction
• calculates electrode displacements
Algorithm performance

under-regularized

regularized

under-regularized

regularized

artefact amplitude

deforation (% of diameter)
Imaging deformable media

Simulation

true
1%

standard

proposed

Phantom

5%

EIT for deformable media

C. Gómez-Laberge, 2006
Imaging deformable media

Phantom time series:
- 6 sec. increments
- periodic 5% deformation
Imaging deformable media

Human TLC-RC breathing: 1.2 sec. increments

10.8 sec 12 sec 13.2 sec 14.4 sec 15.6 sec 16.8 sec 18 sec

Human “paradoxical” breathing: 1.2 sec. increments

6 sec 7.2 sec 8.4 sec 9.6 sec 10.8 sec 12 sec 13.2 sec
Conclusion

This thesis
• studied & quantified the effect of boundary deformation
• proposes an algorithm that compensates & calculates electrode displacement
• provides evidence supporting the use of EIT for deformable media
Contributions

journal

conferences
