Electrical Impedance Tomography for Deformable Media

Mr. Camille Gómez-Laberge

M.A.Sc. Electrical Engineering Candidate School of Information Technology & Engineering University of Ottawa

November 9th, 2006

Outline

- Electrical impedance tomography
- Image variability from boundary deformation
- Electrode displacement regularization
- Imaging of deformable media
- Conclusion

EIT for deformable media

EIT for deformable media

internal conductivity

EIT for deformable media

internal conductivity

EIT for deformable media

inverse problem

- non-linear
- unstable
- not unique

boundary voltage

EIT for deformable media

?

internal conductivity

boundary voltage

EIT for deformable media

internal conductivity

boundary voltage

EIT for deformable media

internal conductivity

boundary voltage

EIT for deformable media

internal conductivity

Boundary deformation

Tenersis bootyvistigoft and is always in motion

- body motion causes EIT errors because: the boundary deforms the electrodes move
- monitoring may require movement e.g., breathing to monitor lung ventilation

EIT for deformable media

Boundary deformation

adapted from http://www.brendoman.com/media/ (Oct. 12, 2006)

EIT for deformable media

Boundary

- deformation
- A study at the Emphiese surements to
 - determine how much error is introduced from
 - 1. boundary deformation
 - 2. electrode displacement along boundary
 - analysed results by
 1. inspection
 - 2. error measurement

EIT for deformable media

Boundary deformation

EIT for deformable media

C. Gómez-Laberge, 2006

Boundary deformation

EIT for deformable media

Boundary

Conductivity Variation vs. Number of Misplaced Electrodes

The proposed solution includes an electrode displacement parameter into the inverse problem define the system model

- define the augmented regularization matrix
- define the augmented Jacobian matrix

EIT for deformable media

 \mathbf{V}

X

EIT for deformable media

C. Gómez-Laberge, 2006

$\mathbf{x} = f(J,R)\mathbf{v}$

$\mathbf{x} = (J^T J + \lambda^2 R)^{-1} J^T \mathbf{v}$

EIT for deformable media

Building *R* -- *a priori* claims

- conductivity distribution is smooth
- adjacent electrode displacements are correlated

EIT for deformable media

EIT for deformable media

EIT for deformable media

EIT for deformable media

EIT for deformable media

R =

Building J -- sensitivity to input change

- conductivity change will affect boundary voltage
- displacements will affect boundary voltage

EIT for deformable media

EIT for deformable media

C. Gómez-Laberge, 2006

Algorithm performance

Results of a comparison to the standard algorithm

- no change in position accuracy
- marginal improvement in image resolution
- large improvement in artefact reduction
- calculates electrode displacements

EIT for deformable media

Imaging deformable media

Phantom time series:

- 6 sec. increments
- periodic 5% deformation

EIT for deformable media

Imaging deformable media

Human TLC-RC breathing: 1.2 sec.

Human "paradoxical" breathing: 1.2 sec. increments

EIT for deformable media

Conclusion

This thesis studied & quantified the effect of boundary deformation

- proposes an algorithm that compensates & calculates electrode displacement
- provides evidence supporting the use of EIT for deformable media

EIT for deformable media

Contributions

journal

Soleimani, M., **Gomez-Laberge, C.**, and Adler, A. (2006) Imaging of conductivity changes and electrode movement in electrical impedance tomography. Physiological Measurement. 27:S103-S113

conferences

Gomez-Laberge, C., and Adler, A. (2006) Imaging of electrode movement and conductivity change simulations in electrical impedance tomography. In Proceedings IEEE CCECE. Ottawa, Canada.

McLeod, C., **Gomez-Laberge, C.,** and Adler, A. (2006) Reduction of electrode position errors in clinical imaging. In Conference 7th Biomedical Applications of Electrical Impedance Tomography. Seoul, South Korea.

EIT for deformable media