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Sparse matrices?

Sparse matrices?

➫ Why sparse matrices?

✔ Many classes of problems result in matrices with a large number of zeros,

✔ A sparse matrix is a special class of matrix that allows only the non-zero terms to be stored

✔ Reduction in the storage requirements for sparse matrices

✔ Significant speed improvement as many calculations involving zero elements are neglected

➫ Sparse matrices prior to Octave 2.9

✔ Fake sparse implementation that allows sparse keywords while treating the matrices as full

✔ Sparse matrix implmentation in octave-forge with SuperLU solvers

✘ Missing several key features. Notably sparse indexing. That is

a = sparse ( . . . ) ; ## Sparse Matrix

a (1) = 1; ## F u l l Matrix

✘ Large use of C constructs such as malloc/free preventing its inclusion in octave.
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Why am I using sparse matrices

Why am I using sparse matrices
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Extension of 802.11a carrier layout to OFDMA

✔ OFDMA is an extension of OFDM where the carriers of OFDM are shared between users

✔ Sparse block diagonal matrices arise naturally from OFDMA systems

✔ Some systems propose upto 4096 carriers with only a small fraction used by a single user
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Storage of sparse matrices

Storage of sparse matrices

✔ Given a-priori knowledge of problems to be solve, choose sparse matrix storage to reduce

stirage and complexity

✔ Octave use column-major storage of matrices, and so compressed column format is a natural

choice of sparse storage

1 2 0 0

0 0 0 3

0 0 0 4

(1,1) = 1

(1,2) = 2

(2,4) = 3

(3,4) = 4

cidx = [0,1,2,2,4]

ridx = [0,0,1,2]

data = [1,2,3,4]

✔ Octave forces the elements of each column to be stored in increasing order of their row

index
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Creating Sparse Matrices

Creating Sparse Matrices

➫ Ways of creating Sparse matrices

✔ Returned from a function (eg sprand, speye, spdiags, etc

✔ Constructed from matrix or vectors (eg sparse, spconvert)

✔ Created, and then filled

✔ Return from user oct-file

➫ What to look out for

Recommended way to create a sparse matrix is from three vectors with the sparse function.

There is a memory reallocation at each step of a sparse assignment (vectorize!)

k = 5; nz = r ∗ k ; s = s p a l l o c ( r , c , nz )

fo r j = 1: c

idx = randperm ( r ) ;

s ( : , j ) = [ zeros ( r − k , 1) ; rand (k , 1)] ( idx ) ;

endfor
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Sparse Functions

Sparse Functions

• Generate sparse matrices: spalloc, spdiags, speye, sprand, sprandn, sprandsym

• Sparse matrix conversion: full, sparse, spconvert, spfind

• Manipulate sparse matrices: issparse, nnz, nonzeros, nzmax, spfun, spones, spy,

• Graph Theory: etree, etreeplot, gplot, treeplot, treelayout

• Sparse matrix reordering: ccolamd, colamd, colperm, csymamd, symamd, randperm, dmperm,

symrcm

• Linear algebra: matrix_type, spchol, spcholinv, spchol2inv, spdet, spinv, spkron, splchol, splu,

spqr, condest, eigs, normest, sprank, svds, spaugment

• Iterative techniques: luinc, bicg, bicgstab, cholinc, cgs, gmres, lsqr, minres, pcg, pcr, qmr,

symmlq

• Miscellaneous: spparms, symbfact, spstats, spprod, spcumsum, spsum, spsumsq, spmin, spmax,

spatan2, spdiag

And all of the one argument mapper functions (eg sin, cos, etc)
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Sparse Return Types

Sparse Return Types

✔ In general the return type of sparse functions and operators is adapted to minimize the

memory requirements to store the matrix.

✔ Functions that have a high probability of always returning a sparse matrix, will return one

(eg. speye(3) + 0)

✔ Any sparse matrix that takes more memory than the full version will be promoted to a full

matrix when returned to the user.
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Information About Sparse Matrices

Information About Sparse Matrices

Basic functions giving information include, issparse which identifies a sparse matrix, nnz which

returns the number of non-zero elements, nzmax which returns the storage for non-zero ele-

ments and spstats that gives some basic statistics.

Functions giving graphical information are spy giving the structure of the matrix, etreeplot giving

the elimination tree and gplot the adjacency of nodes in the matrix. gplot is used as

A = sparse([2,6,1,3,2,4,3,5,4,6,1,5],

[1,1,2,2,3,3,4,4,5,5,6,6],1,6,6);

xy = [0,4,8,6,4,2;5,0,5,7,5,7]’;

gplot(A,xy)
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The final function giving information of interest is matrix_type that identifies that type of matrix

as it will be treated by the left- and right-division operators.
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Mathematical Considerations

Mathematical Considerations

➫ Treatment of zeros in sparse matrices

The basic premise of Octave’s sparse matrix implementation is that sparse matrices should give

equivalent results to calculations involving full matrix. Consider

s = speye(4);

a1 = s.∧2;

a2 = s.∧s;

a3 = s.∧−2;

a4 = s./2;

a5 = 2./s;

a6 = s./s;

## Sparse Matrix

## No problems

## Attention to 0.∧0 terms (1)

## Attention of 0.∧−2 terms (Inf)

## No problems

## Attention to 2./0 terms (Inf)

## Attention to 0./0 terms (NaN)

This is in contrast to Matlab that returns different matrices for full and sparse versions for the

above. Similar behavior to Matlab can be had by using

function z = f(x), z = 2 ./ x; endfunction; a5 = spfun (@f, s);
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Mathematical Considerations

➫ The sign-bit of zero

As sparse matrices do not store zero values, they do not store the sign bit of zero values. In

certain cases a the sign bit is important.

a = 0 . / [−1, 1; 1 , −1];

b = 1 . / a

−I n f I n f

I n f −I n f

c = 1 . / sparse ( a )

I n f I n f

I n f I n f

aW Kahan, “Branch Cuts for Complex Elementary Functions, or Much Ado About Nothing’s Sign Bit”, Chapter 7, “The

State of the Art in Numerical Analysis”, Oxford 1987
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Mathematical Considerations

➫ Reordering for sparsity

✔ Functions/operators on a sparse matrix result in a sparse matrix with more non-zero values

✔ Reformulated with suitable permutations, such that the operator or function on the per-

muted problem is sparser than the original problems (LU = PSQ versus LU = S)
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David Bateman and Andy Adler 10



Mathematical Considerations

Structure of LU factorization Structure of permuted LU factorization

LU factorization of unpermuted matrix has 212044 non-zero terms while LU factorization of

permuted matrix has 143491 terms.
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Linear Algebra

Linear Algebra

1. if the matrix is diagonal, solve directly and goto 8

2. If the matrix is a permuted diagonal, solve directly taking into account the permutations.

Go to 8

3. If the matrix is square, banded and if the band density is less than that given by spparms

("bandden") continue, else go to 4.

(a) If the matrix is tridiagonal and the right-hand side is not sparse continue, else go to 3b.

i. If the matrix is hermitian, with a positive real diagonal, attempt Cholesky factorization

using Lapack xPTSV.

ii. If the above failed, or the matrix is not hermitian, use Gaussian elimination with

pivoting using Lapack xGTSV, and go to 8.

(b) If the matrix is hermitian with a positive real diagonal, attempt a Cholesky factorization

using Lapack xPBTRF.

(c) if the above failed or the matrix is not hermitian with a positive real diagonal use Gaus-

sian elimination with pivoting using Lapack xGBTRF, and go to 8.
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Linear Algebra

4. If the matrix is upper or lower triangular perform a sparse forward or backward substitution,

and go to 8

5. If the matrix is a upper triangular matrix with column permutations or lower triangular

matrix with row permutations, perform a sparse forward or backward substitution, and go

to 8

6. If the matrix is square hermitian with a real positive diagonal, attempt a sparse Cholesky

factorization using CHOLMOD.

7. If the sparse Cholesky factorization failed or the matrix is not hermitian, and the matrix is

square, perform LU factorization using UMFPACK.

8. If the matrix is not square, or any of the previous solvers flags a singular or near singular

matrix, find a minimum norm solution using CXSPARSE.
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Benchmarking Addition and Multiplication

Benchmarking Addition and Multiplication

Perform simple benchmarking of sparse addition and multiplication operator with the code

nrun = 5; tmin = 1; time = 0; n = 0;

while ( time < tmin || n < nrun )

c l e a r a , b ;

a = sprand ( order , order , dens i t y ) ;

t = cputime ( ) ;

b = a OP a ;

time = time + cputime () − t ;

n = n + 1;

end

time = time / n ;

where OP is * or +, and compare against Matlab R14sp2.
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Benchmarking Addition and Multiplication

Order Den- Execution Time for Operator (sec) Order Den- Execution Time for Operator (sec)

sity Matlab Octave sity Matlab Octave

+ * + * + * + *

500 1e-02 0.00049 0.00250 0.00039 0.00170 5000 1e-03 0.00526 0.03000 0.00257 0.01896

500 1e-03 0.00008 0.00009 0.00022 0.00026 5000 1e-04 0.00076 0.00083 0.00049 0.00074

500 1e-04 0.00005 0.00007 0.00020 0.00024 5000 1e-05 0.00051 0.00051 0.00031 0.00043

500 1e-05 0.00004 0.00007 0.00021 0.00015 5000 1e-06 0.00048 0.00055 0.00028 0.00026

500 1e-06 0.00006 0.00007 0.00020 0.00021 10000 1e-02 0.22200 24.2700 0.10878 6.55060

1000 1e-02 0.00179 0.02273 0.00092 0.00990 10000 1e-03 0.02000 0.30000 0.01022 0.18597

1000 1e-03 0.00021 0.00027 0.00029 0.00042 10000 1e-04 0.00201 0.00269 0.00120 0.00252

1000 1e-04 0.00011 0.00013 0.00023 0.00026 10000 1e-05 0.00094 0.00094 0.00047 0.00074

1000 1e-05 0.00012 0.00011 0.00028 0.00023 10000 1e-06 0.00110 0.00098 0.00039 0.00055

1000 1e-06 0.00012 0.00010 0.00021 0.00022 20000 1e-03 0.08286 2.65000 0.04374 1.71874

2000 1e-02 0.00714 0.23000 0.00412 0.07049 20000 1e-04 0.00944 0.01923 0.00490 0.01500

2000 1e-03 0.00058 0.00165 0.00055 0.00135 20000 1e-05 0.00250 0.00258 0.00092 0.00149

2000 1e-04 0.00032 0.00026 0.00026 0.00033 20000 1e-06 0.00189 0.00161 0.00058 0.00121

2000 1e-05 0.00019 0.00020 0.00022 0.00026 50000 1e-04 0.05500 0.39400 0.02794 0.28076

2000 1e-06 0.00018 0.00018 0.00024 0.00023 50000 1e-05 0.00823 0.00877 0.00406 0.00767

5000 1e-02 0.05100 3.63200 0.02652 0.95326 50000 1e-06 0.00543 0.00610 0.00154 0.00332

Benchmark of basic operators on Matlab R14sp2 against Octave 2.9.5, on a Pentium 4M

1.6GHz machine with 1GB of memory.
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Benchmarking Left-Division

Benchmarking Left-Division

Perform simple benchmarking of sparse left-division operator agianst Matlab, with the code

nrun = 5; tmin = 1; time = 0; n = 0;

while ( time < tmin || n < nrun )

c l e a r a , b ; load t e s t . mat ;

x = ones ( order , 1 ) ;

t = cputime ( ) ; b = a \ x ; time = time + cputime () − t ;

n = n + 1;

end

time = time / n ;

489 matrices from the University of Florida sparse matrix collection

(http://www.cise.ufl.edu/research/sparse/matrices) with the following criteria

• Has real or complex data available, and not just the structure,

• Has between 10,000 and 1,000,000 non-zero element,

• Has equal number of rows and columns,

• The solution did not require more than 1GB of memory, to avoid issues with memory.
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Benchmarking Left-Division

The metric for the benchmark is (OctaveTime−MatlabTime)/MatlabTime.
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LU solver

Octave is significantly better performance in the majority of cases. There are some outlying

cases for the LU solvers that are probably due to lucky choices of reordering. Better Cholesky

performance of Octave is due to CHOLMOD (used without METIS)
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Benchmarking Left-Division
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Benchmark of left-division for problems using

QR solver

Octave has inferior performance for QR problems due to the use of Householder reflections

where Matlab uses Given’s rotations. Insufficient data and run times for banded problems for

valid comparison.
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Using Sparse Matrices in Oct-files

Using Sparse Matrices in Oct-files

There are three basic sparse class and their correspondng octave_value classes

SparseMatrix ⇒ octave_sparse_matrix

SparseComplexMatrix ⇒ octave_sparse_complex_matrix

SparseBoolMatrix ⇒ octave_sparse_bool_matrix

The three classes are based on the class Sparse<T> that is very similar to Array<T>. The

sparse classes therefore have very similar usage to the existing Matrix classes.

➫ Differences between the Array and Sparse Classes

✔ The method nelem returns the storage allocated, rather than the product of the dimensions.

✔ Two additional methods nnz and numel that return the actual number of non-zero elements

in the matrix and the product of the dimensions. numel can overflow and should be avoided.

✔ fortran_vec is replaced by cidx, ridx and data methods. User must respect CCS format.

✔ Extract data from octave_value with sparse_matrix_value, etc
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Using Sparse Matrices in Oct-files

➫ The elem and () operator

Care should be taken with the elem method and () operator. Used with zero elements on non-

const values causes the element to be created, with a consquent memory reallocation.

Don’t use the () operator like this instead take a const copy first, like this

SparseMatr ix sm; SparseMatr ix sm;

. . . . . .

cons t SparseMatr ix tmp (sm ) ;

f o r ( i n t j = 0; j < nc ; j++) f o r ( i n t j = 0; j < nc ; j++)

f o r ( i n t i = 0; i < nr ; i++) f o r ( i n t i = 0; i < nr ; i++)

s td : : c e r r << " ( " << i << " , " s td : : c e r r << " ( " << i << " , "

<< j << " ) : " << sm( i , j ) << j << " ) : " << tmp( i , j )

<< std : : endl ; << std : : endl ;

The const copy is low-cost as only the container of the matrix is copied, not the data itself.
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Creating Sparse Matrices in Oct-Files

Creating Sparse Matrices in Oct-Files

There are two basic methods of creating sparse matrices in oct-files. If the triplets of row, column

and value are known then the sparse matrix can be created directly

i n t nz = 4 , nr = 3 , nc = 4;

ColumnVector r idx ( nz ) ;

ColumnVector c idx ( nz ) ;

ColumnVector data ( nz ) ;

r idx (0) = 0; r idx (1) = 0; r idx (2) = 1; r idx (3) = 2;

c idx (0) = 0; c idx (1) = 1; c idx (2) = 3; c idx (3) = 3;

data (0) = 1; data (1) = 2; data (2) = 3; data (3) = 4;

SparseMatr ix sm( data , r idx , c idx , nr , nc ) ;

A copy of the matrix existing in ColumnVector’s which requires additional memory.
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Creating Sparse Matrices in Oct-Files

We can create the sparse matrix directly, by preallocating the sparse matrix then filling it.

Points to note

✔ The size of the sparse matrix will be automatically enlarged by the elem method and ()

operator if needed

✔ Rather than increase the capacity of the sparse matrix element by element, the capacity can

be increased with the change_capacity method.

✔ If additional storage for the sparse matrix is allocated when returning the matrix, it can be

removed with the maybe_compress method.

✔ Rather than use the elem method or () operator, it is often better to use the ridx, cidx and

data methods to fill in the sparse matrix directly in compressed column format.

David Bateman and Andy Adler 22



Creating Sparse Matrices in Oct-Files

A generic example of an efficient means of creating a sparse matrix in an oct-file is

octave_value arg ; i f ( i i == nz )

. . . {

// Assume we know the max no nz // Add 2 elements

i n t nz = 6 , nr = 3 , nc = 4; nz += 2;

SparseMatr ix sm ( nr , nc , nz ) ; sm . change_capac i ty

Matrix m = arg . matr ix_value ( ) ; ( nz ) ;

}

i n t i i = 0; sm . data ( i i ) = tmp ;

sm . c idx (0) = 0; sm . r idx ( i i ) = i ;

f o r ( i n t j = 1; j < nc ; j++) i i ++;

{ }

fo r ( i n t i = 0; i < nr ; i++) sm . c idx ( j +1) = i i ;

{ }

double tmp = foo (m( i , j ) ) ; // Don ’ t know a−p r i o r i the

i f ( tmp != 0 . ) // f i n a l no of nz .

{ sm . maybe_compress ( ) ;
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Miscellaneous Tidbits

Miscellaneous Tidbits

✔ Sparse logical indexing. There is no sparse logical indexing in the idx_vector class. This

means

a = sprandn (1e6 ,1 e6 ,1 e−6) ; a (a < 1) = 0;

will cause a memory overflow

✔ Sparse indexed values that are strict permutations or permuted sub-blocks are faster than

generic indexed assignments.

n = 1e4 ;

p = randperm (n ) ;

a= sprandn (n , n ,5/n ) ;

t = cputime ( ) ; b = a(p , : ) ; cputime () − t

ans = 0.011998

p(1) = p ( 2 ) ;

t = cputime ( ) ; c = a(p , : ) ; cputime () − t

ans = 9.7325
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Conclusion

Conclusion

✔ Full implementation of sparse type for Octave including all indexed and assignment opera-

tors, mapper functions, etc

✔ Optimized poly-morphic solvers for left- and right-division operators.

✔ Many optimizations already made to the code to allow competitive performance compared

to Matlab.

✔ Presented benchmarks for the addition, multiplication and left-dividion operators that

demonstrates that Octave is competitive with Matlab.

✔ Presented use of the sparse types in real life examples and in oct-files.

✔ Major missing features are the eigs and svds functions, and iterative solvers.
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