Sparse Matrix Implementation in Octave

D. Bateman ${ }^{\dagger}$, A. Adler ${ }^{\ddagger}$
\dagger Centre de Recherche, Motorola, Les Algorithmes, Commune de St Aubin, 91193
Gif-Sur-Yvette, FRANCE

\ddagger School of Information Technology and Engineering (SITE), University of Ottawa, 161 Louis Pasteur Ottawa, Ontario, Canada, K1N 6N5

April 2006

Sparse matrices?

\Rightarrow Why sparse matrices?
\checkmark Many classes of problems result in matrices with a large number of zeros,
\checkmark A sparse matrix is a special class of matrix that allows only the non-zero terms to be stored
\checkmark Reduction in the storage requirements for sparse matrices
\checkmark Significant speed improvement as many calculations involving zero elements are neglected
\Rightarrow Sparse matrices prior to Octave 2.9
\checkmark Fake sparse implementation that allows sparse keywords while treating the matrices as full
\checkmark Sparse matrix implmentation in octave-forge with SuperLU solvers \mathbf{X} Missing several key features. Notably sparse indexing. That is

```
a = sparse (...); ## Sparse Matrix
a(1) = 1; ## Full Matrix
```

X Large use of C constructs such as malloc/free preventing its inclusion in octave.

Why am I using sparse matrices

Typical 802.11a carrier layout

Extension of 802.11a carrier layout to OFDMA
\checkmark OFDMA is an extension of OFDM where the carriers of OFDM are shared between users
\checkmark Sparse block diagonal matrices arise naturally from OFDMA systems
\checkmark Some systems propose upto 4096 carriers with only a small fraction used by a single user

Storage of sparse matrices

\checkmark Given a-priori knowledge of problems to be solve, choose sparse matrix storage to reduce stirage and complexity
\checkmark Octave use column-major storage of matrices, and so compressed column format is a natural choice of sparse storage

$$
\begin{aligned}
\text { cidx } & =[0,1,2,2,4] \\
\text { ridx } & =[0,0,1,2] \\
\text { data } & =[1,2,3,4]
\end{aligned}
$$

\checkmark Octave forces the elements of each column to be stored in increasing order of their row index

Creating Sparse Matrices

\Rightarrow Ways of creating Sparse matrices

\checkmark Returned from a function (eg sprand, speye, spdiags, etc
\checkmark Constructed from matrix or vectors (eg sparse, spconvert)
\checkmark Created, and then filled
\checkmark Return from user oct-file
\Rightarrow What to look out for
Recommended way to create a sparse matrix is from three vectors with the sparse function.
There is a memory reallocation at each step of a sparse assignment (vectorize!)

```
\(\mathrm{k}=5 ; \mathrm{nz}=\mathrm{r} * \mathrm{k} ; \mathrm{s}=\mathrm{spalloc}(\mathrm{r}, \mathrm{c}, \mathrm{nz})\)
for \(\mathrm{j}=1: \mathrm{c}\)
    idx \(=\) randperm (r);
    \(\mathrm{s}(\mathrm{i}, \mathrm{j})=[\operatorname{zeros}(\mathrm{r}-\mathrm{k}, 1) ; \operatorname{rand}(\mathrm{k}, 1)](\mathrm{idx})\);
endfor
```


Sparse Functions

- Generate sparse matrices: spalloc, spdiags, speye, sprand, sprandn, sprandsym
- Sparse matrix conversion: full, sparse, spconvert, spfind
- Manipulate sparse matrices: issparse, nnz, nonzeros, nzmax, spfun, spones, spy,
- Graph Theory: etree, etreeplot, gplot, treeplot, treelayout
- Sparse matrix reordering: ccolamd, colamd, colperm, csymamd, symamd, randperm, dmperm, symrcm
- Linear algebra: matrix_type, spchol, spcholinv, spchol2inv, spdet, spinv, spkron, splchol, splu, spqr, condest, eigs, normest, sprank, svds, spaugment
- Iterative techniques: luinc, bicg, bicgstab, cholinc, cgs, gmres, lsqr, minres, pcg, pcr, qmr, symmlq
- Miscellaneous: spparms, symbfact, spstats, spprod, spcumsum, spsum, spsumsq, spmin, spmax, spatan2, spdiag

And all of the one argument mapper functions (eg sin, cos, etc)

Sparse Return Types

\checkmark In general the return type of sparse functions and operators is adapted to minimize the memory requirements to store the matrix.
\checkmark Functions that have a high probability of always returning a sparse matrix, will return one (eg. speye $(3)+0$)
\checkmark Any sparse matrix that takes more memory than the full version will be promoted to a full matrix when returned to the user.

Information About Sparse Matrices

Basic functions giving information include, issparse which identifies a sparse matrix, $n n z$ which returns the number of non-zero elements, nzmax which returns the storage for non-zero elements and spstats that gives some basic statistics.
Functions giving graphical information are spy giving the structure of the matrix, etreeplot giving the elimination tree and gplot the adjacency of nodes in the matrix. gplot is used as

$$
\begin{aligned}
& \mathrm{A}= \\
& \\
& \\
& \mathrm{xy}= \\
& \quad[1,1,2,2,3,3,4,4,5,5,6,6], 1,6,6) ; \\
& \operatorname{gplot}(\mathrm{A}, \mathrm{xy})
\end{aligned}
$$

The final function giving information of interest is matrix_type that identifies that type of matrix as it will be treated by the left- and right-division operators.
uOttawa

Mathematical Considerations

\Rightarrow Treatment of zeros in sparse matrices

The basic premise of Octave's sparse matrix implementation is that sparse matrices should give equivalent results to calculations involving full matrix. Consider

$$
s=\text { speye }(4)
$$

$$
a 1=s .^{\wedge} 2 ; \quad \text { \#\# No problems }
$$

$$
a 2=s . \wedge s ; \quad \text { \#\# Attention to } 0 .{ }^{\wedge} 0 \text { terms (1) }
$$

$$
a 3=s .^{\wedge}-2 ; \quad \text { \#\# Attention of } 0 .^{\wedge}-2 \text { terms (Inf) }
$$

$$
a 4=s . / 2 ; \quad \text { \#\# No problems }
$$

$$
a 5=2 . / s ; \quad \text { \#\# Attention to } 2 . / 0 \text { terms (Inf) }
$$

$$
a 6=s . / s ; \quad \text { \#\# Attention to } 0 . / 0 \text { terms (NaN) }
$$

This is in contrast to Matlab that returns different matrices for full and sparse versions for the above. Similar behavior to Matlab can be had by using

$$
\text { function } \mathrm{z}=\mathrm{f}(\mathrm{x}), \mathrm{z}=2 \mathrm{I} / \mathrm{x} \text {; endfunction; } \mathrm{a} 5=\operatorname{spfun}(@ f, \mathrm{~s}) \text {; }
$$

\Rightarrow The sign-bit of zero

As sparse matrices do not store zero values, they do not store the sign bit of zero values. In certain cases ${ }^{\text {a }}$ the sign bit is important.

$$
\begin{aligned}
& \mathrm{a}=0 \text {./ }[-1,1 ; 1,-1] \text {; } \\
& \mathrm{b}=1 \text {./ a } \\
& -I n f \quad \operatorname{Inf} \\
& \text { Inf } \quad-\mathrm{Inf} \\
& \text { c = } 1 \text {./ sparse (a) } \\
& \text { Inf Inf } \\
& \text { Inf Inf }
\end{aligned}
$$

[^0]
\Rightarrow Reordering for sparsity

\checkmark Functions/operators on a sparse matrix result in a sparse matrix with more non-zero values
\checkmark Reformulated with suitable permutations, such that the operator or function on the permuted problem is sparser than the original problems ($L U=P S Q$ versus $L U=S$)

Geometry of FEM model of phantom ball ${ }^{a}$

[^1]

Structure of derived spare matrix

LU factorization of unpermuted matrix has 212044 non-zero terms while LU factorization of permuted matrix has 143491 terms.

Linear Algebra

1. if the matrix is diagonal, solve directly and goto 8
2. If the matrix is a permuted diagonal, solve directly taking into account the permutations. Go to 8
3. If the matrix is square, banded and if the band density is less than that given by spparms ("bandden") continue, else go to 4.
(a) If the matrix is tridiagonal and the right-hand side is not sparse continue, else go to 3 b .
i. If the matrix is hermitian, with a positive real diagonal, attempt Cholesky factorization using Lapack xPTSV.
ii. If the above failed, or the matrix is not hermitian, use Gaussian elimination with pivoting using Lapack xGTSV, and go to 8.
(b) If the matrix is hermitian with a positive real diagonal, attempt a Cholesky factorization using Lapack xPBTRF.
(c) if the above failed or the matrix is not hermitian with a positive real diagonal use Gaussian elimination with pivoting using Lapack xGBTRF, and go to 8.
4. If the matrix is upper or lower triangular perform a sparse forward or backward substitution, and go to 8
5. If the matrix is a upper triangular matrix with column permutations or lower triangular matrix with row permutations, perform a sparse forward or backward substitution, and go to 8
6. If the matrix is square hermitian with a real positive diagonal, attempt a sparse Cholesky factorization using CHOLMOD.
7. If the sparse Cholesky factorization failed or the matrix is not hermitian, and the matrix is square, perform LU factorization using UMFPACK.
8. If the matrix is not square, or any of the previous solvers flags a singular or near singular matrix, find a minimum norm solution using CXSPARSE.

Benchmarking Addition and Multiplication

Perform simple benchmarking of sparse addition and multiplication operator with the code

```
nrun = 5; tmin = 1; time = 0; n = 0;
while (time < tmin || n < nrun)
        clear a, b;
        a = sprand (order, order, density);
        t = cputime ();
        b = a OP a;
        time = time + cputime () - t;
        n = n + 1;
end
time = time / n;
```

where OP is * or + , and compare against Matlab R14sp2.

Order	Density	Execution Time for Operator (sec)				Order	Density	Execution Time for Operator (sec)			
		Matlab		Octave				Matlab		Octave	
		+	*	+	*			+	*	+	*
500	1e-02	0.00049	0.00250	0.00039	0.00170	5000	$1 \mathrm{e}-03$	0.00526	0.03000	0.00257	0.01896
500	1e-03	0.00008	0.00009	0.00022	0.00026	5000	$1 \mathrm{e}-04$	0.00076	0.00083	0.00049	0.00074
500	1e-04	0.00005	0.00007	0.00020	0.00024	5000	$1 \mathrm{e}-05$	0.00051	0.00051	0.00031	0.00043
500	$1 \mathrm{e}-05$	0.00004	0.00007	0.00021	0.00015	5000	1e-06	0.00048	0.00055	0.00028	0.00026
500	1e-06	0.00006	0.00007	0.00020	0.00021	10000	$1 \mathrm{e}-02$	0.22200	24.2700	0.10878	6.55060
1000	1e-02	0.00179	0.02273	0.00092	0.00990	10000	$1 \mathrm{e}-03$	0.02000	0.30000	0.01022	0.18597
1000	$1 \mathrm{e}-03$	0.00021	0.00027	0.00029	0.00042	10000	$1 \mathrm{e}-04$	0.00201	0.00269	0.00120	0.00252
1000	$1 \mathrm{e}-04$	0.00011	0.00013	0.00023	0.00026	10000	$1 \mathrm{e}-05$	0.00094	0.00094	0.00047	0.00074
1000	$1 \mathrm{e}-05$	0.00012	0.00011	0.00028	0.00023	10000	1e-06	0.00110	0.00098	0.00039	0.00055
1000	1e-06	0.00012	0.00010	0.00021	0.00022	20000	$1 \mathrm{e}-03$	0.08286	2.65000	0.04374	1.71874
2000	1e-02	0.00714	0.23000	0.00412	0.07049	20000	$1 \mathrm{e}-04$	0.00944	0.01923	0.00490	0.01500
2000	1e-03	0.00058	0.00165	0.00055	0.00135	20000	1e-05	0.00250	0.00258	0.00092	0.00149
2000	$1 \mathrm{e}-04$	0.00032	0.00026	0.00026	0.00033	20000	1e-06	0.00189	0.00161	0.00058	0.00121
2000	1e-05	0.00019	0.00020	0.00022	0.00026	50000	1e-04	0.05500	0.39400	0.02794	0.28076
2000	1e-06	0.00018	0.00018	0.00024	0.00023	50000	$1 \mathrm{e}-05$	0.00823	0.00877	0.00406	0.00767
5000	$1 \mathrm{e}-02$	0.05100	3.63200	0.02652	0.95326	50000	$1 \mathrm{e}-06$	0.00543	0.00610	0.00154	0.00332

Benchmark of basic operators on Matlab R14sp2 against Octave 2.9.5, on a Pentium 4M 1.6 GHz machine with 1 GB of memory.

Benchmarking Left-Division

Perform simple benchmarking of sparse left-division operator agianst Matlab, with the code

```
nrun = 5; tmin = 1; time = 0; n = 0;
while (time < tmin || n < nrun)
    clear a, b; load test.mat;
    x = ones(order,1);
    t = cputime (); b = a \ x; time = time + cputime () - t;
    n = n + 1;
end
time = time / n;
```

489 matrices from the University of Florida sparse matrix collection (http://www.cise.ufl.edu/research/sparse/matrices) with the following criteria

- Has real or complex data available, and not just the structure,
- Has between 10,000 and 1,000,000 non-zero element,
- Has equal number of rows and columns,
- The solution did not require more than 1GB of memory, to avoid issues with memory.
uOttawa

The metric for the benchmark is (OctaveTime - MatlabTime)/MatlabTime.

Benchmark of left-division for problems using Benchmark of left-division for problems using Cholesky solver

Octave is significantly better performance in the majority of cases. There are some outlying cases for the LU solvers that are probably due to lucky choices of reordering. Better Cholesky performance of Octave is due to CHOLMOD (used without METIS)

Benchmark of left-division for problems using Benchmark of left-division for problems using banded solvers

QR solver

Octave has inferior performance for QR problems due to the use of Householder reflections where Matlab uses Given's rotations. Insufficient data and run times for banded problems for valid comparison.

Using Sparse Matrices in Oct-files

There are three basic sparse class and their correspondng octave_value classes

SparseMatrix	\Rightarrow	octave_sparse_matrix
SparseComplexMatrix	\Rightarrow	octave_sparse_complex_matrix
SparseBoolMatrix	\Rightarrow	octave_sparse_bool_matrix

The three classes are based on the class Sparse $<\mathrm{T}>$ that is very similar to Array $<\mathrm{T}>$. The sparse classes therefore have very similar usage to the existing Matrix classes.
\Rightarrow Differences between the Array and Sparse Classes
\checkmark The method nelem returns the storage allocated, rather than the product of the dimensions.
\checkmark Two additional methods $n n z$ and numel that return the actual number of non-zero elements in the matrix and the product of the dimensions. numel can overflow and should be avoided.
\checkmark fortran_vec is replaced by cidx, ridx and data methods. User must respect CCS format.
\checkmark Extract data from octave_value with sparse_matrix_value, etc

\Rightarrow The elem and () operator

Care should be taken with the elem method and () operator. Used with zero elements on nonconst values causes the element to be created, with a consquent memory reallocation.

Don't use the () operator like this

```
SparseMatrix sm;
for (int j = 0; j < nc; j++)
    for (int i = 0; i < nr; i++)
        std::cerr << " (" << i << ","
            << j << "): " << sm(i,j)
            << std::endl;
```

instead take a const copy first, like this

```
SparseMatrix sm;
const SparseMatrix tmp (sm);
for (int j = 0; j < nc; j++)
    for (int i = 0; i < nr; i++)
        std::cerr << " (" << i << " ,"
            << j << "): " << tmp(i,j)
            << std::endl;
```

The const copy is low-cost as only the container of the matrix is copied, not the data itself.

Creating Sparse Matrices in Oct-Files

There are two basic methods of creating sparse matrices in oct-files. If the triplets of row, column and value are known then the sparse matrix can be created directly

```
int nz = 4, nr = 3, nc = 4;
ColumnVector ridx (nz);
ColumnVector cidx (nz);
ColumnVector data (nz);
ridx (0) = 0; ridx (1) = 0; ridx (2) = 1; ridx (3) = 2;
cidx(0) = 0; cidx(1) = 1; cidx(2) = 3; cidx(3) = 3;
data(0) = 1; data(1) = 2; data(2) = 3; data(3) = 4;
SparseMatrix sm(data, ridx, cidx, nr, nc);
```

A copy of the matrix existing in ColumnVector's which requires additional memory.

We can create the sparse matrix directly, by preallocating the sparse matrix then filling it. Points to note
\checkmark The size of the sparse matrix will be automatically enlarged by the elem method and () operator if needed
\checkmark Rather than increase the capacity of the sparse matrix element by element, the capacity can be increased with the change_capacity method.
\checkmark If additional storage for the sparse matrix is allocated when returning the matrix, it can be removed with the maybe_compress method.
\checkmark Rather than use the elem method or () operator, it is often better to use the ridx, cidx and data methods to fill in the sparse matrix directly in compressed column format.

A generic example of an efficient means of creating a sparse matrix in an oct-file is

```
octave_value arg;
// Assume we know the max no nz
int nz = 6, nr = 3, nc = 4;
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();
int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
    {
        for (int i = 0; i < nr; i++)
            {
            double tmp = foo (m(i,j));
            if (tmp != 0.)
                {
```

```
    if (ii == nz)
    {
```

// Add 2 elements
$n z+=2$;
sm.change_capacity
(nz);
\}
sm.data(ii) $=$ tmp;
sm.ridx (ii) $=$ i;
ii ++;
\}
sm.cidx $(j+1)=i i ;$
\}
// Don't know a-priori the
// final no of nz.
sm.maybe_compress ();

Miscellaneous Tidbits

\checkmark Sparse logical indexing. There is no sparse logical indexing in the idx_vector class. This means

$$
\mathrm{a}=\operatorname{sprandn}(1 \mathrm{e} 6,1 \mathrm{e} 6,1 \mathrm{e}-6) ; \mathrm{a}(\mathrm{a}<1)=0
$$

will cause a memory overflow
\checkmark Sparse indexed values that are strict permutations or permuted sub-blocks are faster than generic indexed assignments.

```
n = 1e4;
p = randperm(n);
a= sprandn(n,n,5/n);
t = cputime(); b = a(p,:); cputime () - t
        ans = 0.011998
p(1) = p(2);
t = cputime(); c = a(p,:); cputime() - t
        ans = 9.7325
```


Conclusion

\checkmark Full implementation of sparse type for Octave including all indexed and assignment operators, mapper functions, etc
\checkmark Optimized poly-morphic solvers for left- and right-division operators.
\checkmark Many optimizations already made to the code to allow competitive performance compared to Matlab.
\checkmark Presented benchmarks for the addition, multiplication and left-dividion operators that demonstrates that Octave is competitive with Matlab.
\checkmark Presented use of the sparse types in real life examples and in oct-files.
\checkmark Major missing features are the eigs and svds functions, and iterative solvers.

[^0]: ${ }^{\text {a}}$ W Kahan, "Branch Cuts for Complex Elementary Functions, or Much Ado About Nothing's Sign Bit", Chapter 7, "The State of the Art in Numerical Analysis", Oxford 1987

[^1]: ${ }^{a} \mathrm{http}: / /$ eidors3d.sourceforge.net

