Measuring Biometric Sample Quality By Biometric Information

Andy Adler¹, Richard Youmaran²

¹Carleton University, ²University of Ottawa Ottawa, Canada

Biometric Sample Quality

- Biometric Sample Quality views
- character
 - inherent features
- □ Fidelity
 - accuracy of features
- utility
 - predicted biometrics performance

INCITS, Biometric Sample Quality Standard Draft, M1/06-0003

Utility

If images match better (ie. lower errors) then samples were better

Utility

□ Fairly simple conceptually

- Dependent on matching algorithm
- Doesn't allow quantification of "inherent" quality

Character / Fidelity

Descriptions of "inherent" quality of a biometric sample

- □ Character
 - Blur
 - Shadows
 - Poor lighting
- □ Fidelity
 - A good image of the wrong part

Example: Character

←Best Faces

Human Selections

Worst Faces →

Example: Fidelity

How can we measure quality

- Probing question:
 Why do we worry about low quality images?
- ☐ Answer:

They have less "biometric information"

Biometric Information

☐ We define "biometric information" as:

the decrease in uncertainty about the
identity of a person due to a set of
biometric measurements.

Biometric Information: relative entropy D(p||q)

$$BI = D(p || q) = \int p(\mathbf{x}) \log_2 \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x}$$

- Distributions
 - Individual, $p(\mathbf{x})$
 - Population, $q(\mathbf{x})$
- \square D measures extra information in p than q
- Distribution models
 - Gaussian models, PCA features, regularization

Example: Height

What is the *quality difference* between measures?

Quality of a biometric measure

☐ quality difference between "instruments" f and g is

$$\Delta BI = \frac{\frac{1}{N_f} \sum_{i=1}^{N_f} \left(D(p_{f_i} \parallel q_{f_i}) - D(p_{g_i} \parallel q_{g_i}) \right)^2}{\frac{1}{N_f} \sum_{i=1}^{N_f} \left(D(p_{f_i} \parallel q_{f_i}) \right)^2}$$
 Number of features

Person#1: Δ BI= (.23-.05/.23)²=.61 Person#2: Δ BI= (2.7-1.1/2.7)²=.36

Application #2: Face Recognition

Aberdeen Face database

- 18 frontal images of 16 persons
- Variability in lighting and expression between images
- \square D(p||q) computed for 100 features using
 - PCA (eigenface)
 - FLD (fisherface)

PCA / FLD / PCA+FLD

PCA	FLD	PCA+FLD
45.0 <i>bits</i>	37.0 <i>bits</i>	55.6 <i>bits</i>

- Extra information from both PCA and FLD is small.
- □ Values seem reasonable.
 - Our extrapolations from FRVT2002 give 27.3 bits for lead algorithm

Quality decrease with blur

Aside: our initial mistake

Must compare

Our wrong calculation

	Individual (p)	Population (q)
Instrument #1		
Instrument #2		

- We compared blurry instrument to the clean population
- This increased biometric information
- ☐ The algorithm says: *I can recognize p. He always has a blurry face!*

Summary

- □ relationship between *biometric quality* and *biometric information*
- A method to measure the quality change due to an image degradation

Limitation: Can't measure quality of a single image

Applications

- Clarify nature of biometric quality measures
- □ Help quantify limits of impact of quality on matcher performance
- Help quantify effects of biometric fusion with low quality data
- Privacy impact of approaches to deidentify face data

Comment: Quality

- Quality is a value laden term
- ☐ Can we tell users this?

Maybe we need another term: Clarity?