
Fast Temporal Reconstruction

for EIT

Andy Adler1, William R.B. Lionheart2

1Systems and Computer Engineering,
Carleton University, Ottawa, Canada

2School of Mathematics, University of
Manchester, U.K.

Motivation

• One good thing about EIT is that the data

collection is fast

• Frame rates up to 1000 fps

• Traditionally, EIT uses frame by frame

image reconstruction

• It should be possible to use the temporal

information to improve the images

Image Reconstruction

• Forward Model (linearized)

= ×

Measurements

(difference)

Image

(difference)

Jacobian

System is underdetermined

+ noise

Image Reconstruction

• Inverse Model (linearized)

– ×

Norm weighted by

measurement

accuracy

+ Penalty
Function

2

Image Reconstruction

• Penalty Functions

–

Zero for

Difference EIT

=
Penalty

Function
Expected

image

Norm weighted by

“unlikelyhood” of image

2

Image Reconstruction

• Penalty functions: Image Amplitude

–
Expected

image

1

1

1

1

1

1

Tikhonov prior

2

Image Reconstruction

• Penalty functions: Image Smoothness

–
Expected

image

1

1

1

1

1

1

-½

-½

-½

-½

-½

-½

-½

-½

-½

-½

Laplacian prior

2

Compare Penalty Functions

Images Priors Penalties

1

1

1

1

1

1

-½

-½

-½

-½

-½

-½

-½

-½

-½

-½

1

1

1

1

1

1

1

1

1

1

1

1

A) 3

B) 3
(A) (B)

A) 1

B) 3

More reasonable
Image A is more likely

What about time?

……

0-1 +2 +n+1-2-n

past now future

=

Jacobian

…

Image sequenceMeasurement

sequence

0-1 +2 +n+1-2

past now future

Temporal Reconstruction

Temporal Penalty Functions

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

likely quite likely unlikely

Standard EIT approaches to not take this into account

Kalman Filtering

= × + noise
nHxz +=

kk

= × + process

now
prev.
step

wAxx += −1kk

Observation
Matrix (Jacobian)

State transition

Matrix

Kalman Filtering

Two stage process

• Prediction:

1−

− =
kk

Axx

Estimate of now based

on old data only

• Update:

()−− −+=
kkkkk

HxzKxx̂

• K is Kalman gain:

– Need to update at each step

– Depends on ()
kkk

xxP −= ˆcov

Aside: Simulating movement

• Simulating movement is really tricky

• Simple solution is to choose different
elements in a FEM

discrete elements make model not smooth

Moving Ball in 16 electrode tank

Electrode models

Refinement
at electrode

boundary

Need detailed electrode models to avoid geometry errors

Reconstructed Movies

Netgen simulation of

moving ball,

Using 100,000 elements
per frame

Total simulation time =

3 days

Measurements of

moving plexiglas rod

in saline tank
(thanks to IIRC)

Total model time =

60 seconds

• Algorithm is regularized one-step

Gauss-Newton using Laplace prior

Reconstructed Movies

Netgen simulation of

moving ball,

(100,000 element FEM)

Simulation time = 3 days

Measurements of moving

plexiglas rod in saline tank
(thanks to IIRC)

Measurement time = 60 sec

Gauss-Newton vs. Kalman

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Kalman solver

Solve time = 29.6 min

Data with added 0dB SNR noise

Gauss-Newton vs. Kalman

(0dB SNR)

Gauss-Newton solver

Solve time = 5.33 s

(with caching) = 0.22 s

Kalman solver

Solve time = 29.6 min

We need a faster solver

We can improve on Kalman in two ways

• We can go faster.

– Kalman calculates the temporal prior. We can

directly tell the algorithm

• Use future and past data

– Most EIT reconstruction is post-processing

– For online images, we can delay by a few

frames (≈ 100ms)

Direct temporal solver

……

0-1 +2 +n+1-2-n

=

Jacobian

…

Image sequenceMeasurement

sequence

0-1 +2 +n+1-2

Rewrite as …

Direct temporal forward model

=

Augmented

Jacobian
Image

sequence

Measurement

sequence

×

0

0
-2

-1

0

+1

+2

-2

-1

0

+1

+2

Direct temporal inverse model

×
0

0
– Exp.

image–+

Time

Prior

2 2

Temporal Priors

Exp.

image–

Spatial

Prior

Spatial

Prior

Spatial

Prior

Spatial

Prior

Spatial

Prior

Time

Prior

∆t = 1

Time

Prior

∆t = 2

Time

Prior

∆t = 3

Time

Prior

∆t = 1

Time

Prior

∆t = 2

Time

Prior

∆t = 3

Time

Prior

∆t = 1

Time

Prior

∆t = 2

Time

Prior

∆t = 4

Time

Prior

∆t = 1

Time

Prior

∆t = 1

Time

Prior

∆t = 1

Time

Prior

∆t = 1

Time

Prior

∆t = 1

Time

Prior

∆t = 2

Time

Prior

∆t = 2

Time

Prior

∆t = 2

Time

Prior

∆t = 3

Time

Prior

∆t = 3

Time

Prior

∆t = 4

One-step inverse

We formulate the one step inverse as:

() WzHRWHHx

xHxz
RW

tt 12

222

ˆ
−

+=

+−

λ

λ

Need to cut matrix afterward, we only want

to estimate current image from data

Problem is size of matrix inverse:

For 2 time steps, we have 5 x num_elems

square

Underdetermined formulation

We formulate the one step inverse as:

()

() zWHHRHRx

WzHRWHHx

11211

12

ˆ

ˆ

−−−−

−

+=

+=

λ

λ

tt

tt

Now matrix inverse is smaller:

For 2 time steps, we have 5 x num_meas

square

R-1 and W-1 are modelled directly. No need

to take the inverse

GN vs. Temporal Inverse

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Temporal solver

(4 time steps)

Solve time = 34.81 s
(with caching) = 0.60 s

1. Noise free data (IIRC tank)

2. Data with added 6dB SNR noise

Gauss Newton vs. Temporal

Inverse (6db SNR)

Gauss-Newton solver

Solve time = 5.33 s

(with caching) = 0.22 s

Temporal solver

(4 time steps)

Solve time = 34.81 s

(with caching) = 0.60 s

Discussion

• Temporal priors can improve EIT image

quality

• Temporal priors can be computationally

efficient

– We’re also looking at efficient iterative

implementations, allowing reconstruction of

entire frame sequence simultaneously

Work in progress:

Sequential Stimulations

• One common design for EIT equipment is

parallel measurements with sequential

current patterns

• This means that the ‘image’ is different at

each current pattern instant

• We can formulate this

Direct temporal forward model

=

Augmented

Jacobian
Image

sequence

Measurement

sequence

×

Gauss Newton vs. Kalman

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Temporal solver

(4 time steps)

Solve time = 34.81 s
(with caching) = 0.60 s

Noise free data (IIRC tank) – only one

stimulation pattern kept for each

sequence

Gauss Newton solver uses data from nearby

frames

Gauss Newton vs. Kalman

(sequential – noise free)

Gauss-Newton solver

Solve time = 5.41 s
(with caching) = 0.38 s

Kalman solver

Solve time = 14.2 min

