Fast Temporal Reconstruction for EIT

Andy Adler¹, William R.B. Lionheart²

¹Systems and Computer Engineering, Carleton University, Ottawa, Canada

²School of Mathematics, University of Manchester, U.K.

Motivation

- One good thing about EIT is that the data collection is fast
- Frame rates up to 1000 fps
- Traditionally, EIT uses frame by frame image reconstruction
- It should be possible to use the *temporal* information to improve the images

• Forward Model (linearized)

System is underdetermined

• Inverse Model (linearized)

• Penalty functions: Image Amplitude

• Penalty functions: Image Smoothness

Compare Penalty Functions

Images

Priors

1	-1⁄2				
-1⁄2	1	-1⁄2			
	-1⁄2	1	-1⁄2		
		-1⁄2	1	-1⁄2	
			-1⁄2	1	-1/2
				-1⁄2	1

Penalties

A) 3B) 3

More reasonable Image A is more likely A) 1 B) 3

What about time?

Temporal Reconstruction

Temporal Penalty Functions

likely

quite likely

unlikely

Standard EIT approaches to not take this into account

Kalman Filtering

Kalman Filtering

- Two stage process
 Prediction:
 Estimate of now based on old data only
- Update:

$$\hat{\mathbf{x}}_k = \mathbf{x}_k^- + \mathbf{K}_k \left(\mathbf{z}_k - \mathbf{H} \mathbf{x}_k^- \right)$$

- K is Kalman gain:
 - Need to update at each step

-Depends on
$$\mathbf{P}_k = \operatorname{cov}(\hat{\mathbf{x}}_k - \mathbf{x}_k)$$

Aside: Simulating movement

- Simulating movement is really tricky
- Simple solution is to choose different elements in a FEM

discrete elements make model not smooth

Moving Ball in 16 electrode tank

Electrode models

Need detailed electrode models to avoid geometry errors

Reconstructed Movies

 Algorithm is regularized one-step Gauss-Newton using Laplace prior

Netgen simulation of moving ball, Using 100,000 elements per frame

Total simulation time = 3 days

Measurements of moving plexiglas rod in saline tank (thanks to IIRC)

Total model time = 60 seconds

Reconstructed Movies

Netgen simulation of moving ball, (100,000 element FEM)

Simulation time = 3 days

Measurements of moving plexiglas rod in saline tank (thanks to IIRC)

Measurement time = 60 sec

Gauss-Newton vs. Kalman

Data with added 0dB SNR noise

Gauss-Newton solver

Solve time = 5.33 s(with caching) = 0.22 s Kalman solver

Solve time = 29.6 min

Gauss-Newton vs. Kalman (0dB SNR)

Gauss-Newton solver

Solve time = 5.33 s(with caching) = 0.22 s

Kalman solver

Solve time = 29.6 min

We need a faster solver

We can improve on Kalman in two ways

- We can go faster.
 - Kalman calculates the temporal prior. We can directly tell the algorithm
- Use *future* and *past* data
 - Most EIT reconstruction is post-processing
 - For online images, we can delay by a few frames (≈ 100ms)

Direct temporal solver

Rewrite as ...

Temporal Priors

Spati Prio	al r	Time Prior $\Delta t = 1$	Time Prior $\Delta t = 2$	Time Prior $\Delta t = 3$	Time Prior $\Delta t = 4$	
Time Prio ∆t =	ə r 1	Spatial Prior	Time Prior ∆t = 1	Time Prior $\Delta t = 2$	Time Prior $\Delta t = 3$	
Time Prio ∆t =	ə r 2	Time Prior $\Delta t = 1$	Spatial Prior	Time Prior ∆t = 1	Time Prior $\Delta t = 2$	
Time Prio ∆t =	ə r 3	Time Prior $\Delta t = 2$	Time Prior $\Delta t = 1$	Spatial Prior	Time Prior $\Delta t = 1$	
Time Prio ∆t =	ə r 4	Time Prior ∆t = 3	Time Prior $\Delta t = 2$	Time Prior ∆t = 1	Spatial Prior	

One-step inverse

We formulate the one step inverse as:

$$\|\mathbf{z} - \mathbf{H}\mathbf{x}\|_{\mathbf{W}}^{2} + \lambda^{2} \|\mathbf{x}\|_{\mathbf{R}}^{2}$$
$$\hat{\mathbf{x}} = (\mathbf{H}^{t}\mathbf{W}\mathbf{H} + \lambda^{2}\mathbf{R})^{-1}\mathbf{H}^{t}\mathbf{W}\mathbf{z}$$

Need to cut matrix afterward, we only want to estimate current image from data

Problem is size of matrix inverse:

For 2 time steps, we have 5 x num_elems square

Underdetermined formulation

We formulate the one step inverse as: $\hat{\mathbf{x}} = (\mathbf{H}^{t}\mathbf{W}\mathbf{H} + \lambda^{2}\mathbf{R})^{-1}\mathbf{H}^{t}\mathbf{W}\mathbf{z}$ $\hat{\mathbf{x}} = \mathbf{R}^{-1}\mathbf{H}^{t}(\mathbf{H}\mathbf{R}^{-1}\mathbf{H}^{t} + \lambda^{2}\mathbf{W}^{-1})^{-1}\mathbf{z}$

Now matrix inverse is smaller:

- For 2 time steps, we have 5 x num_meas square
- **R**⁻¹ and **W**⁻¹ are modelled directly. No need to take the inverse

GN vs. Temporal Inverse

- 1. Noise free data (IIRC tank)
- 2. Data with added 6dB SNR noise

Gauss-Newton solver

Solve time = 5.33 s(with caching) = 0.22 s Temporal solver (4 time steps) Solve time = 34.81 s (with caching) = 0.60 s

Gauss Newton vs. Temporal Inverse (6db SNR)

Gauss-Newton solver

Solve time = 5.33 s(with caching) = 0.22 s

Temporal solver (4 time steps) Solve time = 34.81 s (with caching) = 0.60 s

Discussion

- Temporal priors can improve EIT image quality
- Temporal priors can be computationally efficient
 - We're also looking at efficient iterative implementations, allowing reconstruction of entire frame sequence simultaneously

Work in progress: Sequential Stimulations

- One common design for EIT equipment is parallel measurements with sequential current patterns
- This means that the 'image' is different at each current pattern instant
- We can formulate this

Gauss Newton vs. Kalman

Noise free data (IIRC tank) – only one stimulation pattern kept for each sequence

Gauss Newton solver uses data from nearby frames

Gauss-Newton solver

Solve time = 5.33 s(with caching) = 0.22 s Temporal solver (4 time steps) Solve time = 34.81 s (with caching) = 0.60 s

Gauss Newton vs. Kalman (sequential – noise free)

Gauss-Newton solver

Solve time = 5.41 s(with caching) = 0.38 s

Kalman solver

Solve time = 14.2 min