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Motivation

• One good thing about EIT is that the data 

collection is fast

• Frame rates up to 1000 fps

• Traditionally, EIT uses frame by frame 

image reconstruction

• It should be possible to use the temporal 

information to improve the images



Image Reconstruction

• Forward Model (linearized)
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Image Reconstruction

• Inverse Model (linearized)
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Image Reconstruction

• Penalty Functions
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Image Reconstruction

• Penalty functions: Image Amplitude
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Image Reconstruction

• Penalty functions: Image Smoothness
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Compare Penalty Functions

Images Priors Penalties
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What about time?
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Temporal Reconstruction

Temporal Penalty Functions
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Standard EIT approaches to not take this into account



Kalman Filtering
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Kalman Filtering

Two stage process

• Prediction:
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Estimate of now based 

on old data only

• Update:
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• K is Kalman gain:

– Need to update at each step
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Aside: Simulating movement

• Simulating movement is really tricky

• Simple solution is to choose different 
elements in a FEM

discrete elements make model not smooth



Moving Ball in 16 electrode tank



Electrode models

Refinement 
at electrode

boundary

Need detailed electrode models to avoid geometry errors



Reconstructed Movies

Netgen simulation of 

moving ball,

Using 100,000 elements 
per frame

Total simulation time =

3 days

Measurements of 

moving plexiglas rod

in saline tank
(thanks to IIRC)

Total model time =

60 seconds

• Algorithm is regularized one-step 

Gauss-Newton using Laplace prior



Reconstructed Movies

Netgen simulation of

moving ball,

(100,000 element FEM)

Simulation time =  3 days

Measurements of moving 

plexiglas rod in saline tank
(thanks to IIRC)

Measurement time =  60 sec



Gauss-Newton vs. Kalman

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Kalman solver

Solve time = 29.6 min

Data with added 0dB SNR noise



Gauss-Newton vs. Kalman

(0dB SNR)

Gauss-Newton solver

Solve time = 5.33 s

(with caching) = 0.22 s

Kalman solver

Solve time = 29.6 min



We need a faster solver

We can improve on Kalman in two ways

• We can go faster. 

– Kalman calculates the temporal prior. We can 

directly tell the algorithm

• Use future and past data

– Most EIT reconstruction is post-processing

– For online images, we can delay by a few 

frames (≈ 100ms)



Direct temporal solver
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Direct temporal forward model
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Direct temporal inverse model
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Temporal Priors
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One-step inverse

We formulate the one step inverse as:

( ) WzHRWHHx
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Need to cut matrix afterward, we only want 

to estimate current image from data

Problem is size of matrix inverse: 

For 2 time steps, we have 5 x num_elems

square



Underdetermined formulation

We formulate the one step inverse as:
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Now matrix inverse is smaller: 

For 2 time steps, we have 5 x num_meas

square

R-1 and W-1 are modelled directly. No need 

to take the inverse



GN vs. Temporal Inverse

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Temporal solver

(4 time steps)

Solve time = 34.81 s
(with caching) = 0.60 s

1. Noise free data (IIRC tank)

2. Data with added 6dB SNR noise



Gauss Newton vs. Temporal 

Inverse (6db SNR)

Gauss-Newton solver

Solve time = 5.33 s

(with caching) = 0.22 s

Temporal solver

(4 time steps)

Solve time = 34.81 s

(with caching) = 0.60 s



Discussion

• Temporal priors can improve EIT image 

quality

• Temporal priors can be computationally 

efficient

– We’re also looking at efficient iterative 

implementations, allowing reconstruction of 

entire frame sequence simultaneously



Work in progress:

Sequential Stimulations

• One common design for EIT equipment is 

parallel measurements with sequential 

current patterns

• This means that the ‘image’ is different at 

each current pattern instant

• We can formulate this 



Direct temporal forward model
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Gauss Newton vs. Kalman

Gauss-Newton solver

Solve time = 5.33 s
(with caching) = 0.22 s

Temporal solver

(4 time steps)

Solve time = 34.81 s
(with caching) = 0.60 s

Noise free data (IIRC tank) – only one 

stimulation pattern kept for each 

sequence

Gauss Newton solver uses data from nearby 

frames



Gauss Newton vs. Kalman

(sequential – noise free)

Gauss-Newton solver

Solve time = 5.41 s
(with caching) = 0.38 s

Kalman solver

Solve time = 14.2 min


