# Eddy Current Based Flexible Sensor for Contactless Measurement of Breathing

### Alex Richer, Andy Adler SITE, uOttawa

## Eddy current monitoring

- Apply RF energy to body
- Energy induces Eddy currents in conductive tissues at signal frequency
- Eddy currents can be measured
  With separate receive coil
  With transmit coil, during of after signal

## **Typical configuration**



Measurement coil Can be at 90° to Stimulation to reduce interference

# Challenges

- Small signals from biological tissue
- Higher frequencies used (10MHz) to increase signal
- Sensitive to interference
- Sensitive to movement artefacts

# Our Design



coil used for both stimulation and measurement

### **Electronics Designs**

- Design #1 (1995):
- AM demodulator measures signal Design #2 (1997):
- Amplitude of oscillation is maintained with feedback loop.
- Output signal is feedback control signal
  Advantages
  - □ Improved Linearity, Stability



figure 5: Simultaneous record of an electrocardiogram and the signal from the EM sensor (lower trace), showing changes in thoracic conductivity produced by normal, extrasystolic and compensatory beats.

### Performance

#### Good:

- Sensitive to heart and lung activity
- Can detect rhythms
- Can detect relative amplitude of activities
  Bad:
- Large motion artefacts
- Sensitive to movement nearby
- Not suitable for quantitative measurement

### Current work:

- Sleep monitoring application
- Flexible coils
  - □ Possible due to Single send/receive coil
- Frequency counter to demodulate signal
  Demodulation of DC component
- Movement artefact is occasional, and can be detected





## Technology: Applications

#### Infant Apnea Monitoring:

□ significant concern regarding *infant apnea* and *SIDS*.

#### Adult sleep monitoring:

□ Obstructive sleep apnea measurement

□ 12x increase in reported cases 1990 – 1998

## Technology: Advantages

#### Lung volume measurement:

measurement of volume and breath timing

#### Safe:

- □ Radio energy far below standards.
- □ Non-contact operation and design
- Inexpensive: Commodity Electronics components and techniques.

## Technology: Issues

- Movement artefacts:
- Calibration:
  - $\Box$  Need calibration to relate  $\Delta freq$  to Volume
- Accuracy and stability:
  - Small signal levels make accuracy difficult