Automatic Identification of Participants in Haptic Systems

Mauricio Orozco, Yednek Asfaw, Andy Adler, Shervin Shirmohammadi, and Abdulmotaleb El Saddik

School of Information Technology and Engineering
University of Ottawa, Ottawa, Canada
Agenda

• Introduction
• Haptics-Biometric Systems
• Approach
• Results
• Conclusions and Further Work
Introduction

Authentication Systems

• Something that you have (e.g., key)
• Something that you know (PIN)

Biometrics Systems

– Allow identification of individuals
 • Something that you are/do
 – Iris Recognition
 – Voice Recognition
 – Face Recognition
 – Fingerprint

Haptics Systems

– Introduce the complex sense of touch, force and hand kinesthetic in human-computer int
Can we authenticate using haptics?

- Exploring the feasibility of automatically identifying participants using haptic systems
- It would lead to important and interesting applications (e.g., control access in haptic systems)
- Propose a research avenue for identification
- To explore the user’s behaviour
Methodology

• **Data Acquisition**
 – Haptic-based applications
 – Simple maze solving experimentation

• **Analysis:**
 – First Degree Statistics
 – Dynamic Time Warping
 – Spectral Analysis
Data Acquisition

• Haptic-Based Application

• Description:
 – 3D Elastic Membrane Maze solving process

• Software:
 – Python-VRML/Reachin API implementation

Hardware:
 – Reachin Display system
 • Phantom, Display and Stereo-glasses
Experiment

• To construct a Haptic maze on an elastic membrane
• User is asked to navigate the stylus through the maze
• Each person performed exactly the same maze 10 times.
• A group of 22 volunteers took part in the experiment
First Degree Statistics

- Each subject's comparable positions through the maze were evaluated.
- Velocity was calculated in pixels/per second.
- Velocity was relatively steady for most of the subjects.
- Subjects with higher stylus speed showed different acceleration values.
Analysis: Dynamic Time Warping

- Dynamic time warping analysis creates a match score (MS) of two data sets d^1 and d^2
- Comparing their respective strokes; i.e. changes in direction on the 2D plane.
- This technique is used for false rejection rate and false accept rate (FRR/FAR) calculations
The frequency spectrum of the 3D position data is analyzed based on windowed discrete time Fourier transform.

- data₁ and data₂ are from the same user and data₃ from different user.
Results

• To quantify the performance of the proposed algorithms:
 – Standard verification analysis was applied

• A Probability Verification (PV) of 78.8% at 25% FAR

• Equal Error Rate (EER) stands at 22.3% with a threshold MS of 0.195
Conclusions and Further Work

- We have investigated the possibility of automatic identification in Haptic systems.
- Results are mixed. Basic analysis appears to show a relatively low PV.
- On the other hand, further analysis appears to show improvements in system performance.

<table>
<thead>
<tr>
<th>PV</th>
<th>Training Effect</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With</td>
<td>Without</td>
</tr>
<tr>
<td>Time Warping</td>
<td>49.0%</td>
<td>60.1%</td>
</tr>
<tr>
<td>Spectral Analysis</td>
<td>67.6%</td>
<td>78.8%</td>
</tr>
</tbody>
</table>