Automatic Identification of Participants in Haptic Systems

Mauricio Orozco, Yednek Asfaw, Andy Adler, Shervin Shirmohammadi, and Abdulmotaleb El Saddik

School of Information Technology and Engineering University of Ottawa, Ottawa, Canada

Agenda

- Introduction
- Haptics-Biometric Systems
- Approach
- Results
- Conclusions and Further Work

Introduction

Authentication Systems

- Something that you have (e.g., key)
- Something that you know (PIN)

Biometrics Systems

- Allow identification of individuals-
 - Something that you are/do

Haptics Systems

 Introduce the complex sense of touch, force and hand trianeet's stic in humancomputer int

Iris Recognition

- Voice Recognition
- Face Recognition
 - Fingerprint

Can we authenticate using haptics?

- Exploring the feasibility of automatically identifying participants using haptic systems
- It would lead to important and interesting applications (e.g control access in haptic systems)
- Propose a research avenue for identification
- To explore the user's behaviour

Methodology

- Data Acquisition
 - Haptic-based applications
 - Simple maze solving experimentation
- Analysis:
 - First Degree Statistics
 - Dynamic Time Warping
 - Spectral Analysis

Data Acquisition

- Haptic-Based Application
- Description:
 - 3D Elastic Membrane Maze solving process
- Software:
 - Python-VRML/Reachin API implementation

Hardware:

- Reachin Display system
 - Phantom, Display and Stereo-glasses

Experiment

- To construct a Haptic maze on an elastic membrane
- User is asked to navigate the stylus through the maze
- Each person performed exactly the same maze 10 times.
- A group of 22 volunteers took part in the experiment

First Degree Statistics

- Each subject's comparable positions through the maze were evaluated
- Velocity was calculated in pixels/per second
- Velocity was relatively steady for most of the subjects
- Subjects with higher stylus speed showed different acceleration values.

Analysis : Dynamic Time Warping

- Dynamic time warping analysis creates a match score (MS) of two data sets d¹ and d²
- Comparing their respective strokes; i.e. changes in direction on the 2D plane.
- This technique is used for false rejection rate and false accept rate (FRR/FAR) calculations

Spectral Analysis

- The frequency spectrum of the 3D position data is analyzed
- Based on windowed discrete time Fourier transform.
- data₁ and data₂ are from the same user and data₃ from different user

Results

- To quantify the performance of the proposed algorithms:
 - Standard verification analysis was applied
- A Probability Verification(PV) of 78.8% at 25% FAR
- Equal Error Rate (EER) stands at 22.3% with a threshold MS of 0.195

Conclusions and Further Work

PV	Training Effect	
	With	Without
Time Warping	49.0%	60.1%
Spectral Analysis	67.6%	78.8%

- We have investigated the possibility of automatic identification in Haptic systems
- Results are mixed. Basic analysis appears to show a relatively low PV.
- On the other hand further analysis appears to show improvements in