Participant Identification in Haptic systems using HMM

Yednek Asfaw, Mauricio Orozco, Shervin Shirmohammadi, Abdulmotaleb El Saddik, Andy Adler

SITE 2005

Outline

- Biometrics in Haptic systems
- Hidden Markov Model
- System design and Training
- Participant Identification

Results

Discussion

User identification in Haptics Common Biometric systems use:

□ Fingerprint, Face, Iris, Voice...

- All based on unique features of individuals
- Haptic systems introduce:
 - Sense of touch, force and hand kinetics in human-computer interface
 - Possible unique features could be associated with each user
 - Continuous authentication during the life time of a task

User identification in Haptics

Haptic-Based application 3D elastic membrane maze Using Reachin Display system

Phantom, Display, and stereo glasses

User identification in Haptics

Objective is to investigate:

- □ Is it possible to model small portions of a task using HMMs applied to raw sensor data?
- □ Is there a strong connection between the user and the model to allow for identification?
- Important to know:
 - □ HMM structure
 - □ Number of states
 - Number of output parameters

Hidden Markov Models

- Using segmented training data:
 - Train an HMM that is the most likely set of transition probabilities
- Using previously unseen data:
 - Classify it to a particular HMM based on output parameters
- Theory of training and applying HMMs
 Baum-Welch algorithm for training
 Forward-Backward algorithm for testing

Baum-Welch algorithm

- Given initial estimate of the optimized Hidden Markov Model $\lambda = (A, B, \pi)$
- Generate a new estimate λ₁ = (A₁, B₁, π₁) such that:

Π_i P(λ₁| O(n))≥ Π_i P(λ| O(n)) Maximized via the EM algorithm using the entire training data set

Forward-Backward algorithm

- Given a HMM model (λ₁ = (A₁, B₁, π₁)) for each user
 - □ Determine the probability of a data set belonging to a model $P(O | \lambda)$
- probability of observing the partial sequence
 o₁,..., o_t and resulting in state i at time t:
 α_i(t)=P(O₁=O₁,...,O_t=O_t,Q_t=i|λ)

Forward-Backward algorithm

• $P(O \mid \lambda)$ is determined as a sum of above probability which is determined recursively:

$$P(O \mid \lambda) = \sum_{i=1...N} \alpha_i(T)$$

Usually presented as the log likelihood:

 $\log(P(O \mid \lambda))$

Good Match is a negative value close to zero

Approach based on work by Hundtofte et al (2002) in task segmentation for remote surgical procedure

- Unable to carry out task level HMM
 - Lack of well defined protocol for users regarding the other states
 - Data set with task level segmentation did not have all possible output parameter (only pressure)
 - Potentially difficult to identify users all other task level vary greatly

Developed HMM only within Maze Solve state

State Topology of Maze solve

left-to-right transition with no state skips

Transition Probabilities (A)

P(S' S)	S0	S1	S2	S3
S0	0.1	0.9	0	0
S1	0	0.1	0.9	0
S2	0	0	0.1	0.9
S3	0	0	0	1

Initial Probabilities(π)

S0	S1	S2	S3
1	0	0	0

Output Parameters: \Box Force(x,y,z) and Torque(x,y,z) Segmented • p segments per state (N=p*4): $\Phi(k)$, $k=1,2,\ldots,N$ $\Phi(k)$ = Sum (output parameter) in segment k/length of segment k □ Normalized and quantized: • $\Phi^*(k) = Q[\Phi(k)], k = 1, 2, ..., N$

15

The model for each user determined based on Baum-Welch algorithm:

 $\Box \lambda = (A, rand(B), \pi)$

□ 6 output parameters of 6 training data sets

- 36 output sequence of length N (p*4)
- 11 different symbols (O=1,10,20..100)
- The model can be tested on single and multiple parameters

Participant Identification

Single parameter HMM (Torque Y) vs sum(LL)/user

Participant Identification

Multiple parameter HMM (All 6 output parameter)

Participant Identification

Multiple parameter HMM (All 6 output parameter)

Sum of all log likelihood values for all 4 test sets

Discussion and Conclusion

Based on the observation:

- A good HMM depends on the selection of output parameters
- Not all parameters should be used for modeling
- Include output parameter such as velocity, stylus angle may improve the model

Discussion and Conclusion

- Parameter selection could be based on:
 Top performers of single parameter HMM
- Varying the number of states, the segment number per state and quantization level should be looked at
 - Wasn't able to do this in Matlab due to memory issues

Discussion and Conclusion

For continuous identification:

- Average log likelihood value of several user data (between t₁ and t₂, t₂>t₁) would lead better detection
- However, more susceptible to attacks with impostor adjusting the maze navigation approach with access to match score-log likelihood