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User identification in Haptics
� Common Biometric systems use:

�Fingerprint, Face, Iris, Voice…

� All based on unique features of individuals

� Haptic systems introduce:

�Sense of touch, force and hand kinetics in 

human-computer interface 

�Possible unique features could be associated 

with each user

�Continuous authentication during the life time of 

a task
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User identification in Haptics

� Haptic-Based application

�3D elastic membrane maze

� Using Reachin Display system

�Phantom, Display, and stereo glasses
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User identification in Haptics
� Objective is to investigate:

� Is it possible to model small portions of a task 

using HMMs applied to raw sensor data?

� Is there a strong connection between the user 

and the model to allow for identification?

� Important to know:

�HMM structure

�Number of states

�Number of output parameters
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Hidden Markov Models

� Using segmented training data:

�Train an HMM that is the most likely set of 

transition probabilities

� Using previously unseen data:

� Classify it to a particular HMM based on output 

parameters

� Theory of training and applying HMMs

�Baum-Welch algorithm for training

�Forward-Backward algorithm for testing
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Baum-Welch algorithm

� Given initial estimate of the optimized 

Hidden Markov Model λ = (A, B, π) 

� Generate a new estimate λ1 = (A1, B1, π1) 

such that:

Πi P(λ1| O(n))≥ Πi P(λ| O(n)) 

� Maximized via the EM algorithm using the 

entire training data set 
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Forward-Backward algorithm

� Given a HMM model (λ1 = (A1, B1, π1)) for 

each user

�Determine the probability of a data set belonging 

to a model - P(O | λ)

� probability of observing the partial sequence 

o1 ,…, ot and resulting in state i at time t:

αi(t)=P(O1=o1, ... ,Ot=ot,Qt=i|λ) 
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Forward-Backward algorithm

� P(O | λ) is determined as a sum of above 

probability which is determined recursively:

P(O | λ)=Σi=1…N αi(T) 

� Usually presented as the log likelihood:

log(P(O | λ))

� Good Match is a negative value close to zero
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System design and HMM training

Stylus 

Placement 

Solve 

maze

Stylus 

Removal

Inactive

Approach based on work by Hundtofte et al (2002) 

in task segmentation for remote surgical procedure
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System design and HMM training

� Unable to carry out task level HMM

� Lack of well defined protocol for users regarding the 

other states

� Data set with task level segmentation did not have all 
possible output parameter (only pressure)

� Potentially difficult to identify users all other task level 

vary greatly

� Developed HMM only within Maze Solve state
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System design and HMM training
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System design and HMM training

� State Topology of Maze solve

� left-to-right transition with no state skips 
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System design and HMM training

� Output Parameters:

�Force(x,y,z) and Torque(x,y,z)

�Segmented

� p segments per state (N=p*4): Φ(k), k=1,2,…,N 

Φ(k)= Sum (output parameter) in segment k/length of segment k

�Normalized and quantized:

� Φ*(k)=Q[Φ(k)],   k = 1,2, …, N 
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System design and HMM training
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System design and HMM training

� The model for each user determined 
based on Baum-Welch algorithm:
�λ = (A, rand(B), π)

�6 output parameters of 6 training data sets 
� 36 output sequence of length N (p*4)

� 11 different symbols (O=1,10,20..100)

� The model can be tested on single and 
multiple parameters
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Participant Identification

� Single parameter HMM (Torque Y) vs sum(LL)/user
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Participant Identification

HMM2
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Participant Identification

-1200

-1150

-1100

-1050

-1000

-950

-900

lo
g
 l
ik

e
li
h
o
o
d

User 1

User 2

User 3

User 4

User 1 -990 -1025 -1129 -1021

User 2 -1043 -1021 -1121 -1167

User 3 -997 -1033 -1035 -1186

User 4 -1078 -1059 -1148 -1187

HMM1 HMM2 HMM3 HMM4

� Multiple parameter HMM (All 6 output parameter)
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Discussion and Conclusion

� Based on the observation:

�A good HMM depends on the selection of 

output parameters

�Not all parameters should be used for 

modeling 

� Include output parameter such as velocity, 

stylus angle may improve the model
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Discussion and Conclusion

� Parameter selection could be based on:

�Top performers of single parameter HMM

� Varying the number of states, the segment 

number per state and quantization level 

should be looked at

�Wasn’t able to do this in Matlab due to 

memory issues 
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Discussion and Conclusion

� For continuous identification:

�Average log likelihood value of several user 

data (between t1 and t2, t2>t1) would lead 

better detection

�However, more susceptible to attacks with 

impostor adjusting the maze navigation 

approach with access to match score-log 

likelihood 


