Security and privacy issues in biometric systems

Andy Adler
School of Information Technology and Engineering
University of Ottawa
Newsflash! Biometrics

- eight fingerprints and face required to get new US Visa (US VISIT)
- New ICAO passport standard requires biometric data in document
- UK will issue biometric based ID card
- Sea-farer’s ID card will incorporate two fingerprints
What are **Biometrics**

Automatic identification of an individual based on behavioural or physiological characteristics
What are **Biometrics**

Automatic identification of an individual based on behavioural or physiological characteristics

Computer based, ie. fast

Forensics is the science of humans identifying humans
What are Biometrics

Automatic identification of an individual based on behavioural or physiological characteristics

Two types:
1. Verification
2. Identification
What are **Biometrics**

Automatic identification of an *individual* based on behavioural or physiological characteristics

Biometrics is *only* about identity of individual. Other technologies manage security
What are **Biometrics**

Automatic identification of an individual based on **behavioural** or physiological characteristics

Behavioural biometrics:

- Gait
- Voice
- Typing dynamics
- Signature
What are Biometrics

Automatic identification of an individual based on behavioural or physiological characteristics

Physiological Biometrics
- Fingerprint
- Face
- Iris
- Retina
- Hand Geometry
- Dental shape
- DNA
- ...
Security issues

Fraudulent Enrolment

Biometric “Enrolled Image”

Feature Extraction

Template DB

Template

Multiplse enrolment

Invalid data

Confusing value

Match Score

Threshold

Decision

Fatigued operator

Lookalike Impostor

Confuse Algorithm (tilt head, squash finger)

Biometric “Live Image”

Feature Extraction

Template
Security issues

Enroll difficult image

Biometric “Enrolled Image”

Feature Extraction

Template DB

Template

ID card integrity

Database integrity

Biometric Compare

Match Score

Modify weighting of fusion

Threshold

Decision

Reverse engineer algorithm

Replay at matcher

Modify threshold

Regenerate image

Replay at sensor
Security issues

- Supervised sensor
- Unsupervised desktop
- Unsupervised public
- Authenticate via internet
- Biometric sub-system
 - Authenticate Internet app
 - Authenticate Credit card
 - Single Sign-on
 - Release Crypto keys
 - Lookout system
 - Identity verification system
Security issues

- Biometrics only provides identity
 - Need to be coupled to a system
- These systems are also vulnerable to all of the traditional security threats
 - as well as all sorts of new ones
 - and interactions between old and new ones
Face Recognition: Human vs. Automatic Performance

same person?
Same person? Yes

- I have just demonstrated a massively parallel face recognition computer

- Of all biometric modalities, automatic face recognition is most often compared to human performance

- Surprisingly little work has been done to quantify these levels of performance
Other studies

- Kemp et al. (1997) analyzed supermarket cashiers identifying shoppers' credit card photos
 - Results show poor performance.
- Chang Hong et al. (2003) analyzed people matching poor-quality video to high-quality photographs
 - Results show high performance.
- Burton et al. (1998, 2001) compared PCA based and graph-matching algorithms against human ratings
 - Primarily to elucidate aspects of human memory not to evaluate algorithms
Test Design

<table>
<thead>
<tr>
<th>Participants</th>
<th>Employees of 3M Security Systems Division (then AiT) in Ottawa, Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>Voluntary – announcement at company weekly meeting</td>
</tr>
<tr>
<td>Participant demographics</td>
<td>16 Male, 5 Female, ages 20-40, predominantly Caucasian</td>
</tr>
<tr>
<td>Test format</td>
<td>Web based: subject participated from their office</td>
</tr>
<tr>
<td>Instructions</td>
<td>Focus on accurate results</td>
</tr>
</tbody>
</table>
Select choice: no time limit

User info entered on login page
Choice of images

- *Goldilocks* problem:
 - Too easy test -> all score 100%
 - Too hard test -> all score 0%

- Database used: *NIST Mugshot*
 - Large age changes between captures
 - Population that tends to change appearance
Analysis

- Human results
 - Post-processed to choose optimal “threshold” for them
 - An operating point FMR/FNMR calculated

- Software results
 - Same images presented to FR software (worked with 13 packages and versions)
 - ROC curve calculated
Best performing SW available to us in each year.
Results

- Error rates are high
- Significant improvement in SW 1999-2003
- Most motivated, attentive humans can outperform face recognition software
- No significant difference male/female
Conclusion

- Currently, most people are able to significantly outperform FR software on difficult data sets
 - Unlimited time (took 10 s avg.)
 - Motivated staff
- Thus, we have perhaps measured some kind of *upper limit* for HFR
Unanswered questions

1. How do humans perform as familiarity increases?
2. What is the effect of motivation, routine and boredom?
3. Do experts outperform untrained recognizers?
4. What distinguishes good recognizers from poor ones?
5. What if a live subject is available?
Questions: Average HFR?
Idea #1: Convert to polar coords: fit to polynomial in \((r, \theta)\)

Problem:
Curve shape Depends on Polynomial order
Idea #2: Collect all match score data for humans and calculate average

Problem: Match score values mean different things for different people; can’t legitimately take ensemble
Security of biometric templates

Most biometric vendors have claimed it is impossible or infeasible to recreate the enrolled image from a template.

Reasons:

- templates record features (such as fingerprint minutiae) and not image primitives
- templates are typically calculated using only a small portion of the image
- templates are much smaller than the image
- proprietary nature of the storage format makes templates infeasible to "hack".
Images can be **regenerated** …?

- **Typical Biometric processing**

- **enrolled “Image”** → **Template** → **Biometric Compare** → **Match Score**

- **live “Image”** → **Template**

- **Question**: Is this possible?

- **regenerated “Image”**
Automatic image regeneration

Question: is it possible to have generic software to regenerate images from biometric templates?

Answer: Yes

Hill-climbing: begin with a guess, make small modifications; keep modifications which increase the match score

Requirement: access to a match scores
“Hill-climbing” Algorithm

Preprocessing:
- *Obtain Local Database (LD) of face images:* Images are rotated, scaled, cropped
- *Eigenface decomposition of LD:* ith eigenimage is represented by EF_i.
- *Initial image selection (IM_0):*
“Hill-climbing” Algorithm

Iterative estimate improvement: (for $i \ldots$)

- Randomly select eigenimage: EF_k
- Iterate for a range of values c_j:

 $MS_j = \text{biometric_compare}(IM_k + c_j \times EF_k, IM_{\text{targ}})$

 $j_{\text{max}} = j$ for which MS_j is maximum

 $IM_{i+1} = IM_i + c_{j_{\text{max}}} \times EF_k$

 Truncate IM_{i+1} to image limits (ie. 0 to 255)
Results

- Tests were performed against three different face recognition algorithms
 - All are recent products by well known commercial vendors of biometric systems.
 - Two of the vendors participated in the 2002 face recognition vendor test
- For all images and all biometric algorithms, the regenerated image compared at over 99.9% confidence
Results

<table>
<thead>
<tr>
<th>Initial Image</th>
<th>Iteration 200</th>
<th>Iteration 600</th>
<th>Iteration 4000</th>
<th>Target Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Confidence vs. iteration

Confidence is the probability of correct verification for a given match score
Improved regenerated image

Average of 10 Best Estimates

Target Image
Extensions to this approach

Recently, this approach has been extended to fingerprint images

- Uludag developed an approach to modify a collection of minutiae
- Ross has developed a fingerprint image regenerator
Protection:

According to BioAPI

- “…allowing only discrete increments of score to be returned to the application eliminates this method of attack.”

- Idea: most image modifications will not change the match score
Modified “hill-climbing”

Until MS reduces by one quantized level

Keep image With largest MS

IM_{i+1}

IM_i

Q

OQ

RN

EF_k
Modified “hill-climbing”

Iterative estimate improvement: (for \(i \) …)

- Select eigenimage, \(EF_k \)
- Select quadrant \(Q \). Opposite quadrant is \(OQ \).
- Generate image \(RN \): noise in \(OQ \) and zero elsewhere.
- Calculate amount of \(RN \) to reduces the \(MS_i \) by one quantization level.

\[
MS_i = \text{biometric_compare}(IM_i, IM_{targ})
\]
\[
MS_{NI} = \text{biometric_compare}(IM_i + n \times RN, IM_{targ})
\]
Modified “hill-climbing”

Iterative improvement (continued …)

- Randomly select: $E F_k$
- Iterate for a range of c_j using quadrant Q

 $M S_j = biometric_compare(I M_k + c_j \times E F_k,Q, I M_{targ})$

- $j_{\text{max}} = j$ for which $M S_j$ is maximum

- $I M_{i+1} = I M_i + c_{j,max} \times E F_k,Q$

- Truncate $I M_{i+1}$ to image limits (ie. 0 to 255)
Results: modified “hill-climbing”

- No quantization
- “medium” quant.
- “large” quant.

Graph showing confidence over iteration number.
Modified “hill-climbing”

- Discrete match score means less information is available
 - Algorithm takes longer
- Image regeneration works because biometric algorithms “sum up” matching characteristics
 - Changes in quadrants are “independent”
 - We degrade image in one quadrant so that match score is in most informative range
Discussion

Images can be regenerated from biometric templates

- will fool biometric algorithm
- visually reflect important features

- The BioAPI recommendation of using quantized match scores does not provide complete protection
Implications: image regeneration

1. Regenerate images for spoofing
 - ICAO passport spec. has templates encoded with public keys in contactless chip
 - ILO seafarer’s ID has fingerprint template in 2D barcode on document
Implications: image regeneration

2. Reverse engineer algorithm
 - Regenerated images tell you what the algorithm ‘really’ considers important

<table>
<thead>
<tr>
<th>Target</th>
<th>Alg. #1</th>
<th>Alg. #2</th>
<th>Alg. #3</th>
</tr>
</thead>
</table>

- Alg. #3 doesn’t care about nose width
Implications: image regeneration

3. Crack biometric encryption

Biometric encryption seeks to embed a key into the template. Only a valid image will decrypt the key.

- Since images vary
 Enrolled image + Δ => release key

- However
 Enrolled image + Δ + ε => no release

If we can get a measure of how close we are, they we can get a *match score*
Biometric encryption (Soutar, 1998)

- Average pre-aligned enrolled image (f_0)

- Calculate template from Wiener filter
 \[H_0 = \frac{F^* R_0^*}{(F^* F + N^2)} \]
 where R_0 has phase $\pm \pi/2$, ampl = 1

- Each bit of secret is linked to several bits of H_0 with same phase
Crack biometric encryption

- Construct $match$-score from number of matching elements in $link$ table
- Use quantized template reconstructor
Summary

- There is a tendency to use results from cryptography in biometrics security.
- However, biometrics images are not random data.
- Such correlations can probably be exploited in many biometric systems.
Privacy issues

- There are widespread privacy concerns about biometrics.
- This is not really a biometrics issue. Governments have proved themselves irresponsible with personal data. Now people are stonewalling.
- Have you ever checked your credit record? Mine is about 25% inaccurate.
Biometrics technology research and privacy?

- Role of research
 - Identify areas where privacy principles are broken
 - Develop tests for privacy
 - Develop infrastructure to help ensure privacy
Biometrics technology research and privacy?

- Unfortunately, privacy principles are mostly about use of data
- Eg. OECD Privacy Principles:
 - Purpose specification
 - Collection limitation *
 - Use limitation *
 - Security safeguards *
 - Data quality *
 - Accountability
 - Balance security/privacy
Epilogue: *biometrics’ future?*

Operator: "Thank you for calling Pizza Hut."

Customer: "Two All-Meat Special..."

Operator: "Thank you, Mr. Smith. Your voice print identifies you with National ID Number: 6102049998"

Customer: (Sighs) "Oh, well, I'd like to order a couple of your All-Meat Special pizzas..."

Operator: "I don't think that's a good idea, sir."

Customer: "Whaddya mean?"

Operator: "Sir, your medical records indicate that you've got very high blood pressure and cholesterol. Your Health Care provider won't allow such an unhealthy choice."

Customer: "Darn. What do you recommend, then?"
Epilogue:

Operator: "You might try our low-fat Soybean Yogurt Pizza. I'm sure you'll like it"

Customer: "What makes you think I'd like something like that?"

Operator: "Well, you checked out 'Gourmet Soybean Recipes' from your local library last week, sir."

Customer: "OK, lemme give you my credit card number."

Operator: "I'm sorry sir, but I'm afraid you'll have to pay in cash. Your credit card balance is over its limit."

Customer: "@#%/$@&?#!"

Operator: "I'd advise watching your language, sir. You've already got a July 2006 conviction for cussing … "
Questions?
Security and privacy issues in biometric systems

Abstract:
Biometric authentication technologies form part of sophisticated security systems, which consist not only of biometric sensors and match algorithms, but of databases, communications and cryptographic systems. Little work has been done to study the security and privacy issues of biometric systems in this larger sense, in which well understood characteristics of one part of a system may potentially be exploited elsewhere. One specific interest of mine is to use the fact that biometric images are slightly different each time they are measured, and biometric algorithms must be designed to be tolerant of this variability. This tolerance of variability can possibly be exploited in certain situations to attack an authentication system. For example, it is possible to reconstruct face images from face recognition templates. It also may be possible to use this to attack most biometric encryption methods.

This talk will cover a general overview of some of the security and privacy issues in biometric authentication systems, with a focus on techniques to extract information from biometric templates.