
1

Andy Adler

School of Information Technology and Engineering
University of Ottawa

Perl and Inline Octave

(or IPC with an interactive
application)

2

Rating:
Viewer discretion advised

Warning, this talk contains

� Conspicuous use of windows OS
� Occasional insulting comments about Perl

and/or Perl people

3

Background

� I use Perl to manage files, and Octave to crunch
numbers.

� Recently, I worked on a project that generated
enormous data files, which needed to be
processed and then analysed - a perfect task for
my two favourite languages.

� Since I'd just heard a mighty cool talk on Inline
(YAPC::NA 2001), it seemed clear to me that I
needed to write Inline::Octave.

4

Sample Problem

� Is the temperature rising?

� Let's suppose we've decided that we don't
trust those pundits, and we'd like to
calculate for ourselves whether the earth
is getting warmer.

5

Sample Problem

� However, for some crazy reason, we do
trust random stuff published on the
internet

� Type “daily temperature data” into google

6

This looks interesting

7

This looks interesting

8

Step 1: download file

Step 2: look at contents

9

Step 3: file contents

Month Day Year Temperature (ºF)

Step 4: parse in Perl

Code for no data

Convert to ºC

10

What does data look like?
Many ways to plot data
� Load into spreadsheet (OOcalc, Excel)
� Octave (uses gnuplot)
� Perl

�Lots of ways

�Try GD::Graph

11

Plot data with Perl?
� CPAN: Get GD::Graph
� Requires: GD
� Requires: libgd, libjpeg, libpng, libX11 …
� Requires: GD::Text

� This road leads to “DLL hell”.
Time to try a detour

12

Plot data via Octave via Gnuplot

Octave plot syntax
Xdata= [x1,x2,x3];
Ydata= [y1,y2,y3];
plot(Xdata, Ydata);

Usage:
unzip –p allsites.zip CNOTTOWA.txt | \

perl showplot.pl | \
octave -q

Note misspelling:
I wonder how reliable

these data are?

13

Plot code Convert from epoch
to beginning 2000

Exact days per year

14

Temp (ºC): Ottawa for 1999-2004

I went skiing on my birthday here

15

How to calculate trend

� Problem:
Intra-year variations are much larger than year to year

variations

� Approach:
extract and remove signal component in phase with the

year. Remainder is the trend

� Notes:
� This can be done in perl – but I think it’s easier to use

a mathematical language
� This is not the correct way to calculate temperature

trends. Please refer to the scientific literature

16

Analysis: remove year harmonics

Red: Temp (ºC) vs. time (years) in Ottawa.
Green: Components in phase with the year removed
Blue: Best fit line

17

Perl code: process input / output

“unzip –c”
outputs all

files with
“inflating”

between each

process and
calc_stats do
data analysis

18

Octave code: calc_stats

printf "Rate: %1.4f±%1.4f (°C/year) for %d cities\n",
calc_stats()->as_list;

Perl

Octave

19

Octave code: process

global sites=[]; static site_no=1;

fit(1) * (365.2422*24*60*60); # deg/year

process(\@time, \@temp);
Perl

Octave

20

Linking Octave code to perl

21

Results

Yes, the average
temperature is increasing

but not everywhere

Time: (using P4 2.4Ghz machine)
Cygwin / WinXP 192.5 sec
Linux (Knoppix 3.3) 75.5 sec

22

A closer view of the glue

Inline
� Infrastructure

to write perl
in other
languages

� Many Inline
modules

23

Inline::C example

� C code is extracted and compiled to a dynamic
library (or shared object)

� At run-time, perl is linked to dll (or so)

use Inline C;
print "9 + 16 = ", add(9, 16), "\n";
__END__
__C__
int add(int x, int y) {
return x + y;

}

24

Inline Java example

� Java code is extracted and compiled
� Two possibilities

�Run code in JVM and interface via sockets
�Link perl to JVM dll and make calls into it

use Inline Java => q[class Pod_alu {
public Pod_alu() { }
public int add(int i, int j){ return i + j; }

}];
my $alu = new Pod_alu() ;
print $alu->add(9, 16) . "\n“;

25

Octave
� Octave is an interpreted language

�Syntax is like Matlab

� Specializes in mathematical functions
� Why not use perl (ie. PDL)

�Efficiency
�Lots of code Octave/Matlab available
�There’s more than one way to do it

26

Warning:

The following slide makes an unfair jab at
Perl saints.

Viewer discretion is advised

27

Math languages take correctness seriously

For example, in the (excellent) Perl
Cookbook (Christiansen & Torkington):

These lines do not catch the IEEE notations of
“Infinity” and “NaN”, but unless you are
worried that the IEEE committee members will
stop by your workplace and beat you over the
head with copies of the relevant standards,
you can probably forget about these strange
numbers

Serious math people just can’t make jokes
about things like that

28

Interfacing with an interpreter

� An interpreter may be controlled by linking
to its stdin, stdout, and stderr.

� Perl module: IPC::Open3
� Documentation says:

� If you try to read from the child's stdout writer
and their stderr writer, you'll have problems
with blocking, ...".

� I did try, and I did have problems.

29

Example.pm

� Usage:
�Example::interpret: send code to interpreter,

and capture stdout and stderr

$ perl -MExample -e'print Example::interpret("1/2")'
ans = 0.50000

$ perl -MExample -e'print Example::interpret("1/0")‘
warning: division by zero (in octave code) at -e line 1
ans = Inf

30

Example.pm: setup

package Example;
use strict;
use Carp;
use IO::Handle;
my $Oerr= new IO::Handle;
use IPC::Open3;
open3(my $Oin, my $Oout, $Oerr, "octave -qH");
setpriority 0,0, (getpriority 0,0)+4; #lower priority slightly
use IO::Select;
my $select = IO::Select->new($Oerr, $Oout);

Stderr handle must
be preinitialized

31

Example.pm: interpret
my $marker= "-9ABa8l_8Onq,zU9-"; # random string
my $marker_len= length($marker)+1;

sub interpret {
my $cmd= shift;
print $Oin "\n\n$cmd\ndisp('$marker');fflush(stdout);\n";
my $input;
while (1) {

sysread $Oout, (my $line), 16384;
$input.= $line;
last if substr($input, -$marker_len, -1) eq $marker;

}
return substr($input , 0 , -$marker_len);

}

Make interpreter
give back marker
when finished

32

Example.pm: handling stderr

� Concept
�stdout is an arbitrary stream of data
�stderr will consist of bursts of error data

� Implementation
�When we detect stderr data, switch to

process_errors until finished

33

Example.pm: error handler

sub process_errors {
my $select= IO::Select->new($Oerr);
my $input;
while ($select->can_read(0.1)) {

sysread $Oerr, (my $line), 1024;
last unless $line;
$input.= $line;

}
croak "$input (in octave code)" if $input =~ /error:/;
carp "$input (in octave code)" if $input;

}

Timeout for
stderr data

stream

Simple test to
detect warnings

and errors

34

Example.pm: handling stderr
sub interpret {

my $cmd= shift;
my $marker= "-9Ahv87uhBa8l_8Onq,zU9-"; # random string
my $marker_len= length($marker)+1;
print $Oin "\n\n$cmd\ndisp('$marker');fflush(stdout);\n";
my $input;
while (1) {

for my $fh ($select->can_read()) {
if ($fh eq $Oerr) {

process_errors();
} else {

sysread $fh, (my $line), 16384;
$input.= $line;

}
}
last if substr($input, -$marker_len, -1) eq $marker;

}
return substr($input , 0 , -$marker_len);

}

35

Example.pm

� Usage:
�Example::interpret: send code to interpreter,

and capture stdout and stderr

$ perl -MExample -e'print Example::interpret("1/2")'
ans = 0.50000

$ perl -MExample -e'print Example::interpret("1/0")‘
warning: division by zero (in octave code) at -e line 1
ans = Inf

36

Conclusion

� Inline is a great way to glue different
languages together

� Inline::Octave is one option to do
mathematical work in Perl

� Controlling an interpreted language is
tricky. However perl allows this with
IPC::Open3

