

Presentation for HAVE2003

Dynamic Signature Verification System Using Stroke Based Features

Tong Qu Abdulmotaleb El Saddik Andy Adler

22/09/2003 @ University of Ottawa

Outline

- 1. Introduction
- 2. Data acquisition and signature processing
- 3. Feature extraction methods
- 4. Feature distribution for signature classifier
- 5. Signature verification experiments
- 6. Conclusions and future work

1. Introduction

Dynamic Signature Verification in Biometric Techniques

- ➤ A biometric technique for authentication
 - Could replace today's password, pin number etc
- > Application
 - Security
 - Banking
 - E Commerce
 - Document Management
 - Healthcare
 - ...

Dynamic signature

- \Box Dot size = pen pressure
- □ Red Circle = lifted pen

Dynamic Signature Verification

➤ Parameters of interest

- Pen tip velocity and acceleration
- Time between strokes
- Pressure
- Stroke sequencing
- ...

➤ Advantages

- Natural and intuitive
- Commonly accepted for authentication
- Less intrusive than iris, fingerprint, etc.

> Related work

- Time warping
- Euclidian or other distance measure
- Neural network
- •

System Architecture

2. Data acquisition and signature processing

Hardware setup

- Patriot digital pad (tactile sensors)
- WinTablet API
- Raw data measured at serial port

Implementation

- > Custom acquisition
 - C++
- > Analysis
 - Matlab

Patriot digital pad

2. Data acquisition and signature processing

Displacement x

Velocity x

Acceleration x

Displacement y

Velocity y

Acceleration y

Absolute Velocity

Angle

3. Feature Extraction Methods

Stoke based Feature Extraction

Stoke based Feature Extraction

Significant stroke

2. Find significant stroke

- Correspondence matching
- Maximum correlation values w.r.t reference signatures

3. Extract features from significant stroke

- Correlation values
- Stroke duration
- Stroke length
- Statistical distribution of stroke segmentation

Stroke-based normalized pressure vs. time

Stoke based Feature Extraction

Significant stroke

4th stroke's correlation between the signatures

	G1	G2	G3	
G1	1	0.9199	0.9830	
G2	0.9199	1	0.9595	
G3	0.9830	0.9595	1	
G4	0.9575	0.9678	0.9612	
G5	0.9846	0.9643	0.9834	
F1	0.5561	0.6729	0.5573	
F2	0.1508	0.1454	0.0815	

Stroke-based normalized pressure vs. time

4. Feature distribution for signature classifier

Average writing speed vs. number of signatures

Correlation value of significant stroke vs. number of signatures

4. Feature distribution for signature classifier

Gaussian distribution for a person's genuine signature and forgeries

5. Signature verification experiments

Experiment of setup

• # of volunteers : 10

• # of signatures: 240

• Training set: 130 signatures (5, 10, 60 signatures respectively)

• Test set: 110 signature

6 features based verification

- Correlation value of the significant stroke in pressure signal
- The duration of the significant strokes
- Average writing speed
- Total time during the signing process
- Variance of pressure signal in 10 sliding windows
- Mean of the x displacement signal in 100 sliding windows

5. Signature verification experiments

An example of experiment

References	False Rejected		False Accepted			
Training1	Test Genuine	Assigned values to Features	Judgments	Forgery	Assigned values to Features	Judgments
Training2	G1	0 0 0 0 0 0	Accept	F1	1 1 1 1 0 0	Reject
Training3	G2	0 0 0 0 0 1	Accept	F2	0 1 0 0 0 1	Reject
Training4	G3	0 0 1 0 0 0	Accept	F3	1 0 1 1 0 0	Reject
Training5	G4	0 0 0 0 0 0	Accept	F4	1 1 0 0 0 1	Reject
	G5	0 0 0 1 0 0	Accept	F5	1 0 1 1 1 0	Reject
	G6	0 1 0 0 1 0	False reject	F6	1 1 1 1 0 0	Reject
Note	Threshold 80%					

- 4 out of 60 genuine signatures were rejected, FRR of 6.67%
- 1 out of 50 forgery signatures were accepted, FAR of 1.67%

6. Conclusions and future work

Conclusions

- A novel stroke based feature algorithm was developed
- A DSV system was successfully designed, developed, and tested
- Compact system developed by Matlab and WINTab API
- FRR of 6.67%
- FAR of 1.67%

Future work

- Variable threshold will be used, and calculation of the FAR and FRR data for the detection error tradeoff curve
- More features will be evaluated and implemented
- Application to Virtual Environments:
 - To authenticate collaborative participants