An Introduction to MATLAB for DSP Brady Laska

SYSC 4405

Carleton University

September 13, 2007

SYSC 4405 An Introduction to MATLAB for DSP

- **1** MATLAB background
- **2** Basic MATLAB
- **3** DSP functions
- 4 Coding for speed
- 5 Demos

э

- Labs on campus
- Purchase it
 - \hookrightarrow commercial editions \$\$\$, student editions \$ + toolboxes \$
- Use GNU Octave
 - $\, \hookrightarrow \, \, \text{Compatible syntax}$
 - General Grader General Gen
 - → Octave-forge add-on contains most functions from signal processing toolbox
 - \hookrightarrow All in-class examples will run in both MATLAB and Octave (possibly with modification)

Analyze data

 \hookrightarrow import, export, number-crunch, curve fitting

Visualize and explore data

 \hookrightarrow interactive, easy to transform data, powerful plotting/graphics

- Implement/prototype/test algorithms
 - \hookrightarrow vast library of built-in functions, available add-on toolboxes, integration with Simulink
 - $\hookrightarrow\,$ easy to map algebra of DSP algorithms to $\rm MATLAB$ syntax
- Simulation, modelling

- A programming language
- An interactive numerical computation environment
- An interactive development environment
- A programming library and API
- A graphics system (for plotting, GUI creation)

Typical programming constructs

Looping: for, while, break Branching: if-elseif-else, switch-case

Datatypes

■ Standard datatypes are scalar, vector and matrix of double → also: integer, boolean, char, string, structure, cell array

Arrays (vector/matrix) are 1-based and automatically re-size

Other language aspects

- Case sensitive
- Dynamically typed
- Interpreted (mostly)
- Whitespace and terminating ';' are optional
- Interfaces with other languages (C, FORTRAN, Java)
- Object Oriented
 - $\,\hookrightarrow\,$ classes, operator overloading

The MATLAB prompt supports common Linux and Windows shell commands

pwd	current directory path
cd newdirectory	change directory
ls/dir	lists files in current directory
! command	executes <i>command</i> in the system shell
	example: >>!grep fft *.m

æ

< ∃ →

- ∢ ≣ ▶

When you're lost

who,whos help *commandname* lookfor *key* list variables and sizes prints usage and documentation scans documentation for *key* and prints matches

Tab completion, history

Cleaning up

clear x clear variable x, or use clear all
clc,clf clears the console and current figure respectively

Functions

All functions that are frequently used in DSP are included and named as you'd expect: sin,cos,tan,exp,sinc,log,log10,log2,sqrt,pow,...

Arithmetic operators

Matrix operators perform the linear-algebra-defined matrix operation (matrix multiplication, exponential). Array operators work element-by-element and are indicated by adding a period before the operator.

- Built-in complex number support
- Keywords i, j both equal $\sqrt{-1}$ (watch when using index variables and complex numbers in the same function)

 \hookrightarrow example: creating a complex number >>x = 1 + 2j

 Functions for manipulating complex numbers: real, imag, conj, abs, angle, cart2pol, pol2cart Unlike other programming languages, $\rm MATLAB$ has two distinct types of 1-dimensional arrays (vectors).

Row vectors: >>x = [1,2,3]; Default for range operations such as x = 1:10. Column vectors: >>y = [1;2;3]; Default for signals. Functions such as plot, fft, sum, mean, etc. that take a vector input will evaluate each column of a matrix as a separate signal. ones(M,N) matrix of ones
zeros(M,N) matrix of zeros
eye(N) N × N identity matrix
randn(M,N) matrix of zero-mean unit variance Gaussian
random numbers, aka white noise
rand(M,N) matrix of uniform random numbers on [0,1]
diag(x) matrix with x along the diagonal

Note that ones(1E6) will attempt to create a $10^6\times10^6$ matrix, not a $10^6\times1$ vector.

- Most functions can operate on either scalar, vector, or matrix; clever indexing allows functions to be applied to a select subset of your data.
- Elements in a matrix can be accessed using subscripts or linear indices. Functions sub2ind and ind2sub are used to convert back and forth.
- Subsets defined by logical matrix or index set.

Logical matrix

- A matrix of logical ones and zeros (or boolean datatype in new versions) same size as vector/matrix.
- Logical matrices can be combined using Boolean algebra and logical operators: ==,~=,>,<,&,|,xor. Note that &,| accept and return matrices while &&,|| accept and return scalars and are used for control statements.
- Logical vectors can be collapsed to scalars for control statements using any and all.

Index set

- A matrix of linear indices in the range 1:prod(size(A)).
- Expression is evaluated at the indices in the set.
- Sets created using find(Boolean statement).
- Index sets can be combined using set operations: union, intersect, unique, setxor, setdiff.

- size(A) returns the size of the matrix
 - A(:) convert any matrix or vector to a column vector
- A', A.' conjugate and non-conjugate transpose. Generally use conjugate transpose in DSP. reshape reshapes a matrix, traverses column-wise useful for adding/multiplying a vector to each row/column of a matrix flipud,fliplr flips the vector/matrix

 $\rm Matlab$ has many functions for analyzing and constructing filters and transfer functions.

roots	find the zeros of a polynomial
poly	construct a polynomial from a set of roots
zplane	plot poles and zeros on the complex plane
residuez	z-transform partial fraction expansion
fdatool	filter design and analysis tool
fvtool	filter visualization tool

filter(B,A,x)	FIR and IIR filtering
fftfilt(B,x)	FIR filtering using the FFT
conv	discrete convolution (polynomial multiplication)
buffer	divide a signal into (possibly overlapping) frames
windows	hanning, hamming, blackman
	kaiser, bartlett
xcorr	auto and cross-correlation

æ

-

Definition

Vectorization: replacing loops with calls to vector functions.

- MATLAB used to be entirely interpreted and loops were very slow. MATLAB now has JIT acceleration so code using loops with built-in functions can be as fast as vectorizing.
- Vectoring can still make your code faster, more readable, and more amenable to parallelization. Code says *what* you want to do, not *how* to do it.
- Vectorization makes extensive use of index sets and logical matrices.

As usual, don't sacrifice readability and clarity for speed.

Pre-allocate Use ones, zeros to intialize vectors/matrices. Very important, especially for big matrices.

Profile Use profile on, profile report and tic, toc to time code execution.

Mex functions If you *really* need speed, write your function in C or FORTRAN with Mex interfaces.

Example

AM Modulation Create a baseband signal, modulate it using a carrier sinusoid.

Example

Noise removal Identify signal components, remove noise to recover signal.

.⊒ . ►

- P. Venkataraman, "Matlab: A Fast Paced Introduction", Online at: http: //www.rit.edu/~pnveme/Matlab_Course/DEFAULT.HTM.
- S. Roth and A. Balan, "Introduction to Matlab (Demo)", Online at: http://www.cs.brown.edu/courses/ csci1430/MatlabDemo.html.