SYSC 4405

In-class Quiz 5A: Nov 28, 2011

Question 1 (1 point): What is your name and student number?

Name: _____ Lab Section: _____

Student Number:

Question 2 (4 points): Calculate the transfer function - H[z] for the difference equation below, then find the inverse Z-transform of H[z] with its ROC.

$$y[n] = 5 x[n] - 0.2 y[n-1] + 0.24 y[n-2]$$

Solution

$$y[n] + 0.2 y[n-1] - 0.24 y[n-2] = 5 x[n]$$

$$Y(z) (1+0.2z^{-1}-0.24z^{-2})=5 X(z)$$

$$Y(z) = 5 = H(z)$$

$$X(z)$$
 $(1+0.2z^{-1}-0.24z^{-2})$

$$H(z) = \underbrace{\frac{5}{(1+0.6z^{-1})(1-0.4z^{-1})}}_{=} = \underbrace{\frac{A_1}{(1+0.6z^{-1})}}_{=} + \underbrace{\frac{A_2}{(1-0.4z^{-1})}}_{=}$$

poles z=-0.6, 0.4 or $z^{-1} = -5/3$, 2.5

$$A_1 = \frac{5}{(1-0.4z^{-1})} \Big|_{z=-0.6} = \frac{5}{(1-.4/-.6)} = \frac{5}{(5/3)} = 3$$

$$A_2 = 5$$
 = 5 = 2
 $(1+0.6z^{-1})$ | $z=0.4$ | $(1+.6/.4)$ | $(5/2)$

$$H(z) = \frac{3}{(1+0.6z^{-1})} + \frac{2}{(1-0.4z^{-1})}$$

$$h[n] = 3 (-0.6)^n u[n] + 2 (0.4)^n u[n]$$
 ROC $|z| > 0.6$

some useful formulas

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}.$$

$$H(z) = \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}$$

$$A_k = (1 - d_k z^{-1}) H(z)|_{z = d_k}$$

$$Z^{-1}[X(z)] = x[n]$$

Time-domain
$$\Leftrightarrow$$
 z-domain

$$\delta[n] \Leftrightarrow 1$$

$$\delta[n-n_d] \Leftrightarrow z^{-n_d}$$

$$f[n-n_d] \Leftrightarrow z^{-n_d}F(z)$$

 $Aa^nu[n] \Leftrightarrow \frac{A}{1-az^{-1}} \quad ROC: |z| > |a|$

ROC:
$$|z| > |a|$$

SYSC 4405

In-class Quiz 5B: Nov 28, 2011

Question 1 (1 point): What is your name and student number?

Name: _____ Lab Section: _____

Student Number:

Question 2 (4 points): Calculate the transfer function - H[z] for the difference equation below, then find the inverse Z-transform of H[z] with its ROC.

$$y[n] = 9 x[n] + 0.5 y[n-1] + 0.14 y[n-2]$$

Solution

$$y[n] - 0.5 y[n-1] - 0.14 y[n-2] = 9 x[n]$$

$$Y(z) (1 - 0.5z^{-1} - 0.14z^{-2}) = 9 X(z)$$

$$X(z)$$
 $(1 - 0.5z^{-1} - 0.14z^{-2})$

$$H(z) = 9 = A_1 + A_2$$

$$(1+0.2z^{-1})(1-0.7z^{-1}) (1+0.2z^{-1}) (1-0.7z^{-1})$$

poles z=-0.2, 0.7 or $z^{-1} = -5$, 1/.7

$$A_1 = \frac{9}{(1-0.7z^{-1})} \Big|_{z=-0.2} = \frac{9}{(1-.7/-.2)} = \frac{9}{(9/2)} = 2$$

$$A_2 = 9$$
 = 9 = 7
 $(1+0.2z^{-1})$ | $z=0.7$ | $(1+.2/.7)$ | $(9/7)$

$$H(z) = \frac{2}{(1+0.2z^{-1})} + \frac{7}{(1-0.7z^{-1})}$$

$$h[n] = 2(-0.2)^n u[n] + 7(0.7)^n u[n]$$
 ROC $|z| > 0.7$

some useful formulas