
We wish to implement a band-pass filter to demodulate an AM radio station with frequency content in the range 726–734kHz (content in this range should be accepted $\pm 1\%$). We need to reject frequencies below 720kHz and above 740kHz by at least 40dB. We use a DSP system with a sampling frequency of 2MHz.

Our DSP takes 1 clk cycle for addition and 5 clk cycles for multiplication (assume other operations are zero cost). This DSP is available in versions with clk speeds of: 1MHz, 2Mhz, 5Mhz, 10MHz, 20Mhz, 50Mhz, 100MHz, 200Mhz, 500Mhz, 1Ghz, 2GHz. Faster DSPs are more expensive and use up batteries faster.

A. Sketch the filter specifications. What are $\omega_{p,L}$, $\omega_{p,H}$ and $\omega_{s,L}$, $\omega_{s,H}$.

Answer:

 $\begin{array}{l} f_{S,L} = 720 \text{kHz} \rightarrow f_{S,\text{Lnorm}} = 720 \text{kHz}/2\text{MHz} = .360 \ \text{cyc/sample} \rightarrow \omega_{S,\text{Lnorm}} = .360 \ (2\pi) \ \text{rad/sample} \\ f_{P,L} = 726 \text{kHz} \rightarrow f_{P,\text{Lnorm}} = 726 \text{kHz}/2\text{MHz} = .363 \ \text{cyc/sample} \rightarrow \omega_{P,\text{Lnorm}} = .363 \ (2\pi) \ \text{rad/sample} \\ f_{P,H} = 734 \text{kHz} \rightarrow f_{P,\text{Hnorm}} = 734 \text{kHz}/2\text{MHz} = .367 \ \text{cyc/sample} \rightarrow \omega_{P,\text{Hnorm}} = .367 \ (2\pi) \ \text{rad/sample} \\ f_{S,H} = 740 \text{kHz} \rightarrow f_{S,\text{Hnorm}} = 740 \text{kHz}/2\text{MHz} = .370 \ \text{cyc/sample} \rightarrow \omega_{S,\text{Hnorm}} = .370 \ (2\pi) \ \text{rad/sample} \\ \delta_{S} \rightarrow \text{given by 40dB spec} \ \delta_{S} = 10^{-40/20} = .01 \\ \delta_{P} \rightarrow 1\% \ \text{so} \ \delta_{P} \rightarrow 0.01 \end{array}$

B. Calculate ω_c , ω_0 for the BPF. Calculate the ideal BPF.

Answer

$$\begin{split} & \omega_{lower cutoff} = (\omega_{S,Lnorm} + \omega_{P,Lnorm})/2 = .3615(2\pi) \text{ rad/sample} \\ & \omega_{upper cutoff} = (\omega_{P,Hnorm} + \omega_{S,Hnorm})/2 = .3685(2\pi) \text{ rad/sample} \\ & \omega_{O} = (\omega_{c,L} + \omega_{c,H})/2 = .365(2\pi) \text{ rad/sample} \\ & \omega_{c,L} = \omega_{O} - \omega_{lower cutoff} = .0035(2\pi) \\ & \omega_{c,H} = \omega_{upper cutoff} - \omega_{O} = .0035(2\pi) \\ & TBW_{L} = (\omega_{P,Lnorm} - \omega_{S,Lnorm}) = .003(2\pi) \text{ rad/sample} \rightarrow .003 \text{ cyc/sample} \\ & TBW_{H} = (\omega_{S,Hnorm} - \omega_{P,Hnorm}) = .003(2\pi) \text{ rad/sample} \rightarrow .003 \text{ cyc/sample} \\ & h_{BP,IDEAL}[n] = 2\cos[n\omega_{o}][\omega_{c}/\pi]\text{sinc}[n \omega_{c}/\pi] \quad \text{per slide } 20.17 \\ & = 2\cos[n(0.730\pi)][.007]\text{sinc}[n(.007)] \end{split}$$

Note – filter is symmetric (Transition bands have same specification)

C. Choose a windowing function and window length for this filter.

Answer

40dB stop band specification \rightarrow Hann is acceptable window (per slide 22.14)

For Hann: 1.56/L = TBW = .003

 $L = 1.56/.001 = 520 \rightarrow M = 2L+1 = 1041$

D. Calculate the expression for the FIR filter to implement this specification.

Answer

 $h_{BP}[n] = h_{window}[n] h_{BP,IDEAL}[n]$

 $= (0.5 + 0.5\cos(\pi(n-L)/L))(2\cos[(n-L)\omega_{o}][\omega_{c}/\pi]sinc[(n-L)\omega_{c}/\pi])$

 $= (0.5 + 0.5\cos(\pi(n-520)/520))(2\cos[(n-520)(0.730\pi)][.007]\sin[(n-520)(.007)])$

E. To implement this filter as an FIR convolution, how many multiplies and additions are required per output sample.

Answer:

M = 1041

So convolution requires	
M multiplies per sample	1041*5 clk/mult = 5205
M-1 additions per sample	1040*1 clk/add = 1040

Total

6245 clks/sample

F. What is the slowest clock speed DSP that can be used for this application using FIR convolution?

Answer:

2MHz sampling – Need processor > 6245*2MHz = 12.49GHzNone of the available processors will meet the need.

- G. To implement this filter using FFT block processing, calculate how many multiplies and additions are required per output sample:
 - i. for N = 2048
 - ii. for *N*= 4096

Answer:

N=2048 M=1041 B=N-M+1 = 2	.048-1041+1 = 1008 -	processing 1008 sample lengt	h block	S	
FFT Mults FFT Adds Filter Mults IFFT Mults IFFT Adds Overlap Adds	(N/2)(log ₂ N-2)+1 Nlog ₂ N N (N/2)(log ₂ N-2)+1 Nlog ₂ N N	$(2048/2)(\log_2 2048-2)+1$ 2048 $\log_2 2048$ 2048 $(2048/2)(\log_2 2048-2)+1$ 2048 $\log_2 2048$ 2048	9217 22528 2048 9217 22528 2048	*5 *1 *5 *5 *1 *1	46085 22528 10240 46085 22528 2048
Total clocks per Blocks Clocks / samples =149.5K/B = 149.5K/1008 = 148.3 clocks/sample				149.5K	
N=4096 M=1041 B=N-M+1 = 4096-1041+1 = 3056 - processing 3056 sample length blocks					
FFT Mults FFT Adds Filter Mults IFFT Mults IFFT Adds Overlap Adds	(N/2)(log ₂ N-2)+1 Nlog ₂ N N (N/2)(log ₂ N-2)+1 Nlog ₂ N N	$(4096/2)(\log_2 4096-2)+1$ $4096\log_2 4096$ 4096 $(4096/2)(\log_2 4096-2)+1$ $4096\log_2 4096$ 4096	20481 49152 4096 20481 49152 4096	*1 *5 *5	102405 49152 20480 102405 49152 4096
Total clocks per Blocks Clocks / samples =327.7K/B = 327.7K/3056 = 107.2 clocks/sample				327.7K	

H. What is the slowest clock speed DSP that can be used for this application using DSP block processing?

Answer:

At N = 2048	min processor = $148.3*2$ MHz = ~ 0.3 GHz so use 500Mhz (1GHz more likely)
At N = 4096	min processor = $107.2*2$ MHz = ~ 0.2 GHz so use 500Mhz (likely do not need 1G)

I. What is the processing delay for the FIR?

Answer:

N=2048 ; CPU_f = 500MHz Fs = 2MHz \rightarrow Ts = 0.5x10⁻⁶ secs CPU_t = 2x10⁻⁹ secs Processing delay

> Block delay = B* Ts = $1008 * 0.5 \times 10^{-6} = .504$ msec Filter delay = CLKS * CPU_t = $149.5 \times 10^{3} * 2 \times 10^{-9} = .299$ msec

Delay = .803 msec

N=4096; CPU_f = 500MHz Fs = 2MHz \rightarrow Ts = 0.5x10⁻⁶ secs CPU_t = 2x10⁻⁹ secs Processing delay

> Block delay = B* Ts = $3056 * 0.5x10^{-6} = 1.528$ msec Filter delay = CLKS * CPU_t = $327.7x10^3 * 2x10^{-9} = .655$ msec

Delay = 2.183 msec