(1/5) Name _____

Student Number _

(4/5) Please answer the following question in the space below:

For the electronic diagram shown, $V_{CC} = 6 V$,

 R₁ = R₂ = 10 kΩ, and C₁ = 10 nF. Sketch the waveforms at R, S, Q, Q
, and pin #2.

Label voltages and transition times. Show the first two periods of the oscillation. At t = 0, the capacitor has zero charge.

(1/5) Name ____

Student Number _____

(4/5) Please answer the following question in the space below:

For the electronic diagram shown, the op amp is ideal, with $V_{\rm CC} = 5 \, V$. Is is desired to have an oscillation freqency of 10 kHz.

- If $C_1 = 10 nF$, what value of R is required?
- If $R_1 = 10 \text{ k}\Omega$, what value of R_2 is required?

(1/5) Name ____

Student Number ____

(4/5) Please answer the following question in the space below:

For the electronic diagram shown, the op amp is ideal, with $V_{CC} = 5 V$. $C_1 = 10 nF$, $R = 10 k\Omega$, $R_1 = 1 k\Omega$, and $R_2 = 10 k\Omega$, and

- What is the frequency of the waveform at V_o ?
- Sketch the shape of V_o, show the maximum and minimum values.
- $\bullet\,$ Explain why V_o is not a sinusoidal shape.

(1/5) Name ____

_ Student Number _____

(4/5) Please answer the following question in the space below:

The circuits below look similar, but give very different outputs (V_i is the input from another circuit).

- Briefly explain what each circuit does.
- Explain how they are different, and why.

