Amplifiers Slide 03B.1	Biopotential Amplifiers			
Biopotentials	arise from movement of ions in cells and			
organs. Signal Levels are small + noise levels are large				
Electrodes are the biosensor which converts from				
voltage (as ion potential energy – in tissue) \rightarrow				
voltage (as electron potential energy – in wires)				
Biopotential amplifiers are required to				
 Amplify signal levels while rejecting interference 				
- Maintain p	patient electrical safety			

Amplifiers

Amplitude of biomedical signals

Slide 03B.2

Measurement-+	Range	Frequency, Hz	Method
Blood flow	1 to 300 mL/s	0 to 20	Electromagnetic or ultrasonic
Blood pressure	0 to 400 mmHg	0 to 50	Cuff or strain gage
Cardiac output	4 to 25 L/min	0 to 20	Fick, dye dilution
Electrocardiography	0.5 to 4 mV	0.05 to 150	Skin electrodes
Electroencephalography	5 to 300 μ V	0.5 to 150	Scalp electrodes
Electromyography	0.1 to 5 mV	0 to 10000	Needle electrodes
Electroretinography	0 to 900 μ V	0 to 50	Contact lens electrodes
pН	3 to 13 pH units	0 to 1	pH electrode
pCO ₂	40 to 100 mmHg	0 to 2	<i>p</i> CO ₂ electrode
pO ₂	30 to 100 mmHg	0 to 2	pO_2 electrode
Pneumotachography	0 to 600 L/min	0 to 40	Pneumotachometer
Respiratory rate	2 to 50 breaths/min	0.1 to 10	Impedance
Temperature	32 to 40 °C	0 to 0.1	Thermistor

Copyright © by A. Adler, 2014 – 2015

Slide 03B.3

Biopotential Amplifier requirements

Signals are small

Signals are low frequency

Generally amplifiers should be limited to signal range
 Voltage amplifiers required with high input impedance
 Electrical shock protection of patient
 Common mode (CM voltages are high)

Active ground required

- High CMRR required

Quick calibration required

Lots of electrical interference in clinical milieu

Adjustable gain (signal levels vary significantly between patients)

Copyright © by A. Adler, 2014 – 2015

Amplifiers	Gain: differer	ntial and
Slide 03B.5	common	mode
Based on difference the output is: V	The measurements: $v_{+} - v_{-}$	•
where: - A_d : Differenti - A_{cm} : Commo - CMRR = A_d/d	where $V_{cm} = \frac{V_{+} + V_{-}}{2}$ al Gain n-mode Gain A_{cm}	
Example: - $V_0 = 0.01V w$ - $V_0 = 0.02V w$ - $A_{cm} = 0.01 \rightarrow$	hen V_=V ₊ =1V hen V_=1V & V ₊ = 1V+1µV A _d = 0.01V/1µV = 10000	
- CMRR= A _d /A	$A_{cm} = 10^6 \ 10000 \rightarrow 20 \log_{10} 10^6 =$	= 120dB

Amplifiers Slide 03B.7	Amplifier Building Blocks: The difference Amplifier		
In most biomedic measurements	al measurements, we want to make difference $(v_{+} - v_{-})$.		
We can use a <i>difl</i>	erence amplifier		
Because the circuits are linear we decompose the difference amp:			
$V_{3} \xrightarrow{R_{3}} \underset{=}{\overset{R_{4}}{\overset{R_{4}}{\overset{V_{0}}{\overset{V_{0}}{\overset{V_{0}}{\overset{U_{0}}}{\overset{U_{0}}{\overset{U_{0}}{\overset{U_{0}}{\overset{U_{0}$			

Copyright \bigcirc by A. Adler, 2014 – 2015

- Matched components (available in chip form). Stable time/temp/freq
- Gain controlled by selection of R₁

Copyright © by A. Adler, 2014 – 2015

Amplifiers

Instrumentation Amplifiers

Slide 03B.13

Low Cost, Low Power Instrumentation Amplifier

AD620

FEATURES

EASY TO USE Gain Set with One External Resistor (Gain Range 1 to 1000) Wide Power Supply Range (±2.3 V to ±18 V) Higher Performance than Three Op Amp IA Designs Available in 8-Lead DIP and SOIC Packaging Low Power, 1.3 mA max Supply Current

EXCELLENT DC PERFORMANCE ("B GRADE") 50 μV max, Input Offset Voltage 0.6 μV/°C max, Input Offset Drift 1.0 nA max, Input Bias Current 100 dB min Common-Mode Rejection Ratio (G = 10)

LOW NOISE 9 nV/√Hz, @ 1 kHz, Input Voltage Noise 0.28 µV p-p Noise (0.1 Hz to 10 Hz)

EXCELLENT AC SPECIFICATIONS 120 kHz Bandwidth (G = 100) 15 µs Settling Time to 0.01%

Spec sheet from: analog devices

CONNECTION DIAGRAM

8-Lead Plastic Mini-DIP (N), Cerdip (Q) and SOIC (R) Packages

Amplifiers Slide 03B.14	Questions			
What are some requirements for medical amplifiers?				
What is the CM signal? Why is it a problem?				
Why are single chip instrumentation amplifiers better than 3 op-amp ones?				
From the spec sheet: The internal gain resistors, R1 and R2, are trimmed to 24.7 kΩ, allowing the gain to be programmed with a single external resistor: G= 1+49.4kΩ/RG. What is R3, R4?				
 Exam 07f (1c) Because the scalp is an insulator, the EEG signal levels are small, and high amplification is required. Consider an EEG signal which causes a difference of 15µV between two electrodes. The neon interrogation lights cause a common mode signal of 1.8V on the scalp. Given an instrumentation amplifier with gain 10 and CMRR=80 dB, what level of common mode and difference signal will be measured? Will twisting the EEG lead wires together help to reduce the interference from the lights? 				