Electrical Safety

Slide 1.1

Electricity in the body

Physiological Effects of Electricity

- Variations among individuals
- Frequency dependence
- Chronaxie
- Macroshock / Microshock
- **Electrical Faults in Equipment**
- **Electrical Protection**
- Design considerations for this course

SYSC3203: Electrical Safety Slide 1.2	Biopotentials	
Biopotentials a organs. Mea and diagnost	rise from movement of ions in cells and surement of biopotentials yeilds clinically tically significant information.	
Important biop	otentials	
From Nerves		
 Brain (EEG – electroencephalogram) 		
- From Musc	les	
 Heart (ECG – electrocardiogram) 		
 Muscles (EMG – electromyogram) 		
- From Retina	a	
 Transepithelial potential (EOG – electrooculogram) 		

SYSC3203: Electrical Safety	Questions
Slide 1.4	

- Do nerves conduct only in one direction?
- What stops an AP from turning around and propagating in both directions?
- Signalling in nerves can be compared to a Pulse Rate Modulation Communications scheme. Compare and contrast.
- Would you modify the video, to better explain the electrical activity? www.youtube.com/watch?v=G9rHAM0gIn8

- 12 leads

Copyright © by A. Adler, 2014 - 2019

SYSC3203: Electrical Safety Slide 1.9

- Draw a heart, and label the important electrical and mechanical structures (nodes, chambers, arteries ...).
- What is the function of the SA-node?
- What is the function of the AV-node?
- In what way is the ECG a vector field?
- Indicate the electrode locations for the three lead ECG.
- Draw the electrode configuration on Einthoven's Triangle and explain the mathematical relationship between the electrodes.

Electro-Myogram (EMG)

- *Skeletal* (voluntary muscle) is anchored by tendons to bones. Fast response. Fatigues with load.
- *Smooth* (involuntary muscle) is found within the walls of organs and structures (e.g.: esophagus, stomach, intestines, bronchi, uterus, urethra, bladder, blood vessels, and skin). Slow response. Can maintain continuous force.
- *Cardiac muscle* is found in heart. An involuntary muscle but is similar to skeletal muscle. Fast response, but does not fatigue easily.
- Myoelectric (Myo = muscle) signals are the signals captured in the EMG (electromyogram). A voluntary (or induced contraction) creates an electrical signal composed of the action potentials travelling across the muscle fibers

Activation of Muscles

Slide 1.12

- Each somatic (voluntary) neuron activates a group of muscle fibres.
- Motor Unit: one somatic neuron and the group of fibres it activates
- Every action potential initiated by a particular somatic neuron creates a motor unit action potential (MUAP), and for the same somatic neuron, all its MUAPs will look the same.

Copyright © by A. Adler, 2014 - 2019

Muscle Recruitment

Slide 1.13

To increase the contraction strength:

- 1. Increase the firing rate of MUs (temporal recruiting)
- 2. Activate more MUs (spatial recruiting)
 - Large muscle: 100s of fibres/nerve
 - Small muscle: 10s of fibres/nerve (fine motor control comes from here)
 - at max rate, MUAPs fuse together to form tetanus.

SYSC3203: Electrical Safety	Questions	
Slide 1.14		

- \cdot What is a motor unit? What is a muscle fibre?
- Explain the difference between spatial and temporal recruitment
- The normal ECG 'always' has the same structured shape and is easily recognizable, why is this not true of the EMG?

 Points of entry – affected by the current path (and amount of I going through heart)

Copyright \bigcirc by A. Adler, 2014 – 2019

SYSC3203: Electrical Safety	Questions	
Slide 1.19	~	

- What happens at the threshold of perception?
- Why is threshold for ventricular fibrillation so much lower than for sustained myocardial contraction?
- The Let-go current for men is larger than for women. What does this say about men and women © ?
- Why is threshold higher for larger people?
- What is the threshold of pain?

Macroshock

Slide 1.21

Macroshock

- Shock from electrical connections on the skin.
- Worrisome current levels are > 1mA (depending on frequency).
- Typically due to an electrical fault, circuit flaw
- Any effect/device that reduces resistance of skin is a potential hazard (Skin resistance is 15kΩ - 1MΩ, internal resistance is lower ≈100 Ω)
- Skin resistance varies with
 - Injury
 - Water (wet)
 - Oil

Microshock

Slide 1.22

Microshock

- Shock from connections on / near the heart
- Much smaller currents are dangerous. Even a few μA directly to heart is dangerous
- Microshock hazard is due to leakage current in designs
- Hazard from
 - Cardiac catheter
 - IV lines with instruments
 - Cardiac electrodes
 - Pacemakers

Shock prevention

Slide 1.24

Protection strategies for shock

- Reliable grounding
- Double-insulated equipment
- Isolation in design
 - Isolation transformers
 - Isolation amplifiers
 - Optoisolators, Capacitive/Transformer isolation
 - Low voltage design/operation
 - Low leakage current design

Isolation

- Isolation amplifiers:
 - break ground loops,
 - eliminate source ground connections,
 - isolation protection to patient and equipment
- Isolation amplifiers technologies:
 - transformer isolation,
 - capacitor isolation
 - opto-isolation.

Slide 1.28	SYSC3203: Electrical Safety	Optocoupler
	Slide 1.28	

- Optocoupler
- www.sharp-world.com/products/device/lineup/ data/pdf/datasheet/PC1231xNSZ1B_e.pdf

SHARP

PC1231xNSZ0F Series

Internal Connection Diagram

- 1 Anode
- 2 Cathode
- Emitter
- ④ Collector

This course

- Practically, we need guidelines for projects
- I want to say "I told you so" if I have to visit you in hospital ☺.
- Rules
 - In IV instruments for projects
 - For student's research building own circuits
 - Use batteries instead of plugging in.

Questions

- Why are isolation amplifiers required for biomedical designs?
- Name some isolation techniques used to design isolation amplifiers?
- What is the difference between *macroshock* and *microshock*?
- Imagine you're listening to a radio in the bath and you drop it in. How does the third ground wire help protect you? Draw the current pathways.

SYSC3203: Electrical Safety Slide 1.31 (Electrical Safety) Electrical safety is

(Electrical Safety) Electrical safety is obviously an important factor in biomedical electronics. In class we studied the optoisolator

- (a) Define the terms "let-go current" and "threshold of perception", and explain the difference between them.
- (b) The optoisolator above has an isolation voltage of 6.2 kV. Unfortunately, lightening strikes the circuit, applying 500 kV to terminal C, while terminal D is at ground. The terminals A and B are connected to a circuit which is connected to the patient. Where does (and doesn't) the current flow?
- (c) In the previous question, explain whether the patient is protected

Copyright © by A. Adler, 2014 - 2019

Q1 from 2015 final

- 1. (30 points) Electrodes and Electrical Safety
- (a) ...
- (b) What kind of shock risk is possible in this design? Sketch current pathways in the body and indicate if they can travel through the heart.
- (c) In a bathroom, there is an obvious risk: the electronics can get wet. What risk does this pose for the user? Describe one electrical isolation technology that can protect against this risk.