Slide 8C.1

Discrete Time Signals

Copyright © by A. Adler. 2009-2017

Slide 8C.2

Spectrum

Sum of Sinusoids

A signal x(t) can be is represented as a sum of sinusoids

$$x(t) = \sum_{k=1}^{N} A_k \cos(\Omega_k t + \Phi_k)$$

where each sinusoid can have

- its own frequency $\Omega_{_{k}}$
- its own amplitude A_k
- its own phase Φ_i

To put the sinusoid in the spectrum representation, we need to expand each sinusoid into *rotating phasors*.

Slide 8C.3

Spectrum: Phasor Representation

Frequency spectrum representation => *Euler's formula*.

For cosine:
$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

For sine:
$$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} = \left\{ \frac{e^{j\theta} - e^{-j\theta}}{2} \right\} e^{-j\pi/2}$$

For our general sinusoid it is decomposed as:

$$A\cos(\Omega t + \Phi) = \frac{A}{2} \left[e^{j(\Omega t + \Phi)} + e^{-j(\Omega t + \Phi)} \right]$$

Copyright © by A. Adler. 2009-2017

Slide 8C.4

Spectrum

Graphical Representation

 Ω (rads/s)

We can represent the following sinusoid graphically in a frequency spectrum as depicted below.

$$A\cos(5t) = \frac{A}{2}e^{j5t} + \frac{A}{2}e^{-j5t}$$
Each bar represents an exponential
$$\frac{A}{2}$$

Amplitude, phase and frequency are represented.

Spectrum Fourier Analysis

Fourier analysis: represent signal as a spectrum of phasors

DTFT (Discrete-time Fourier Transform)

Also FFT (Fast Fourier Transform)

Spectrum Analysis

Signal Analysis When in Time?

From the frequency spectrum of $x_1(t)$ and $x_2(t)$ we know they contain roughly the same frequency content.

When in time did these frequencies occur?

Possible answers:

- Over all samples n for all time
- Each frequency at a different point in time
- Each frequency at a various points in time, possibly overlapping, possible repeating

Problem: From spectrum alone, we do not know *when* in time a particular frequency component has occurred

Slide 8C.8

Signal Analysis

 $x_1[n]$ and $x_2[n]$

 $x_1(t)$: formed from a C-major scale.

 $x_{2}(t)$: formed by playing notes simultaneously.

Spectrograms

Time-Varying Signals

How can we analyze a *time-varying signal* such where the frequency content changes over time?

We can calculate the DTFT over partitions of x[n] and plot a 2D image where

- x-axis is time (specific partition)
- y-axis is frequency (index k for X[k])
- colour/height is magnitude-squared of X[k]

This is known as a *spectrogram*.

Spectrograms Partitioning Time

Slide 8C.11

Spectrograms Ideal C-Major Scale

Slide 8C.12

Spectrograms C-Major Scale

Spectrogram Window Width (N)

Slide 8C.14

Spectrograms Speech

Slide 8C.15

Questions

- What kind of situations is time frequency analysis useful.
 Comment on analysis of:
 - Speech
 - Music
 - EMG signals
- What is the origin of the artefacts at the frequency transitions?
- If F_s =10kHz and N=1024, what time frame does spectrogram window #9 represent?
- What about the phase in the phasor? Where is that shown in the spectrogram?