

Quantization: approximating a continuous range of values by a small set of discrete values.

Quantization

Questions

Slide 8B.7

- What is the role of
- Sample and Hold?
- Quantizer?
- Encoder?
- An 8-bit ADC has a range of 0V 1V
 - What is the resolution
 - What is the sensitivity?
 - To what voltages do the maximum and minimum output values correspond?
- What happens if the signal x(t) is outside the range

 X_{min} to X_{maxX} ?

Quantization

Analog to Digital Converters

Slide 8B.9

Encoding: 8, 12, 16 bit ADCs exist (also called bit depth) Technologies

- Direct conversion (Flash conversion) fastest, least bits
- Successive-approximation
- Sigma-Delta ADC
- Integrating ADC slowest, largest bits

Terminology

- Range: $X_{max} X_{min}$
 - Single Supply: $X_{min} = 0$
 - Differential: $X_{min} = -X_{max}$
- Resolution: Number of discrete values (= L)
 - Resolution in Volts is $(X_{max} X_{min})/(L-1)$
- Sampling Frequency

Quantization Slide 8B.10		ADC Example (Unipolar / Single Supply)						
 3-bit ADC => Input Range: E> Δ = (Input Rang X_{max} = Max input 	(ample e)/Leve	0 – 2V els = 2V		50V				
	utput .evel	Code	Min	Max	Level (V)	Min (V)	Max (V)	
	0	000	-00	T_1	0.000	-00	0.125	
	1	001	$T_{_{1}}$	T_2	0.250	0.125	0.375	
	2	010	T ₂	Τ ₃	0.500	0.375	0.625	
	3	011	Τ ₃	T ₄	0.750	0.625	0.875	
	4	100	T_4	T₅	1.000	0.875	1.125	
	5	101	T_{5}	T_6	1.250	1.125	1.375	
	6	110	T_6	T ₇	1.500	1.375	1.625	
	7	111	T ₇	+∞	1.750	1.625	+∞	

Quantization	ADC Examples
Slide 8B.11	(Unipolar / Single Supply)
Single Supply / Unip - Range: 0 to 1 V - B = 2 - L = 2 ² = 4 - $\Delta = (1 - 0) / 4 = 0$ - $X_{min} = 0$ - $X_{max} = 1V - \Delta = 0$ - Thresholds, $T_1 \dots$ $T_1 = L_0 + (1 - \frac{1}{2})$ $T_2 = L_0 + (2 - \frac{1}{2})$ $T_3 = L_0 + (3 - \frac{1}{2})$	$\begin{array}{c} 0.25 \\ 0.75V \\ .T_{3} \\ 0) \times \Delta = \ 0.125 \\ 0) \times \Delta = \ 0.375 \end{array}$

Quantization Slide 8B.13	ADC Example (Bipolar / Dual Supply)									
• 3-bit ADC => $2^3 = 8$ Levels • Input Range: Example -2V to +2V • $\Delta = (\text{Input Range})/\text{Levels} = 4V / 8 = 0.50V$ • $X_{\text{max}} = \text{Max input range} - \Delta = 1.50$										
Output Level		Min	Max	Level (V)	Min (V)	Max (V)				
0	100	-00	T_1	-2.00	-00	-1.75				
1	101	T_1	T_2	-1.50	-1.75	-1.25				
2	110	T ₂	$T_{_3}$	-1.00	-1.25	-0.75				
3	111	T ₃	T_4	-0.50	-0.75	-0.25				
4	000	T_4	$T_{_{5}}$	0.00	-0.25	+0.25				
5	001	$T_{_{5}}$	T_6	+0.50	+0.25	+0.75				
6	010	T_6	T ₇	+1.00	+0.75	+1.25				
7	011	T ₇	+∞	+1.50	+1.25	+∞				

- If L=100, how many bits B are required for the encoder.
- If L is even and one level is 0, how do we assign levels for a double sided ADC?
- If the measurement noise at the sensor results in a SNR of 40 dB, and the input range of the ADC is 0-100°C.
 We want the quantization noise to be lower than the measurement noise. How many quantization bits, B, should the ADC have?
 - (You may assume the temperature is uniformly distributed between 10-50°C, and the ADC input voltage is linearly related to temperature)

An 8-bit ADC has an input range of $\pm 1 \text{ V}$ to $\pm 1 \text{ V}$ (corresponding to output codes of ± 128 to 127). You use this ADC to design a circuit to measure EMG signals with a range of $\pm 50 \text{ mV}$.

- What is the range of digital output values from the ADC we expect from these EMG signals?
- What is the resolution (in Volts)?
- What is the maximum quantization error?
- When you look at the data, there are a number of recorded values of -128 in the data stream. What does this mean?