Sensors Slide 07B.1	Sensors

- Learning Outcomes
 - Sensors
 - Resolution, Sensitivity, Operating Range
 - Displacement Sensors
 - Potentiometers
 - Strain Gauges
 - Capacitive Sensors
 - Inductive Sensors
 - Temperature Sensors
 - Thermistors
 - Thermocouples

Sensors Slide 07B		Sensors
Sensor:	qua	vice which detects changes in Intities of interest and provides a dable output

Examples

- Thermocouple converts temperature to voltage.
- •Mercury thermometer converts temperature to a reading on a calibrated glass tube.

Slide 07B.4

Sensitivity and operating range

Many sensors have a linear operating range.

Outside this range we have the maximum operating range (that doesn't damage the instrument)

- Thermistors
- Thermocouples
- Also: time, light, chemical, electromagnetic ...

Copyright © by A. Adler, 2009-2019 (including Material from J.G. Webster)

Sensors Slide 07B.7	Question:
If we apply 10V single turn pot with 50 wire tu covering 250°.	entiometer
 What is sensit volts/degree)? 	
• What is resolu	tion?

Sensors Slide 07B.8	Strain Gauges
Strain gauge measures strain (deformation) by a change in resistance.	

 Measurement circuits typically use Wheatstone bridge

Gauge Factor: measure of gauge sensitivity GF = (ΔR/R) / strain

R: undeformed resistance ΔR: change in R due to strain strain: fractional change in length (ΔL/L)

Sensors Slide 07B.10	Question
Mercury plethysmograph m change in leg blood volur pressure cuff applied (ve occlusion)	ne after
 μ for Hg is 0.5 	
 Calculate ΔR/R if blood makes 10% increase in diameter 	
• G = 1 + 2×0.5 = 2	
• $\Delta R/R = G \times (\Delta R/R) = 0.2$	
	Note: Hg no longer used.

(unstressed)

strain gauge (stressed)

R

R₁

- Strain makes R_4 increase to 1.1k
- Strain makes R₂ increase to 1.01k
- What is V?
 - V_A = 5V

-
$$V_{B} = 10V \times R_{4}/(R_{2}+R_{4}) = 5.21V$$

$$-V = V_{A} - V_{B} = -0.21V$$

• Temperature increase makes both R_4 and R_2 decrease by 5%. What is V?

Self-inductance

Mutual inductance

- Inductance sensor measures displacement by changes in geometry.
- Tend to be non-linear, since geometry to inductance relationship is non-linear
- Many applications: metal detectors, proximity detector, traffic light car presence detector

Sensors Slide 07B.18	Questions	

- What is the Gauge factor? What kinds of materials have large G? When is this useful?
- Why is temperature variation in R of a strain gauge a problem? What strategies can be used to help deal with it?
- Name some applications for inductive sensors?
- Since capacitive sensors are highly non-linear, what kinds of applications are they useful for?

Sensors

Slide 07B.19

Temperature Measurement

Why measure temperature

- Body is a heat engine. We burn food + oxygen to get energy for life. Temperature monitors the functioning of the engine
- Temperature increase hyperthermia
 - typical cause: infection
- Temperature decrease hypothermia
 - typical cause: shock

Instruments

- Thermistors
- Thermocouples
- Radiation (hot objects emit IR radiation not included)

Sensors Slide 07B.20	Thermisto	rs
	pe of resistor with resistance ing to its temperature.	
thermal and resis	<i>tor</i> = thermistor	
2 1 1	ons for thermistors: current- al protectors, self-regulating	
 Biomedical app sensing, breath 	plications: thermometers, flow ning (nasal thermistor)	
	ve some temperature variation. /e large tempco (%change/ºC)	
 material is gen 	erally a ceramic or polymer	

As temperature increases, the thermistor resistance decreases, yielding more current that flows through $R_{\rm f}$, thus $V_{\rm o}$ increases. Many different sizes:

- Small Thermistors are more fragile, faster (2s)
- Larger Thermistors respond slowly (10s)

The hot junction is at the thermocouple. The LT1025 electronic cold junction compensates for ambient temperature changes. The noninverting amplifier provides a high input impedance and high gain.

Type K (chromel–alumel) commonly used general purpose thermocouple. Inexpensive. Available in the -200° C to +1350°C range. Sensitivity $\approx 41 \,\mu$ V/°C.

Sensors

Slide 07B.26

Questions

Thermocouple or thermistor?

- Cheap
- Mechanically strong
- Simplest electrical circuit
- Capable of high temperatures
- Fastest response

Sensors Slide 07B.27	Questions

- How does a thermistor differ from a thermocouple? Which is more linear? Which is less brittle? Which can have the fastest response?
- What would you build the temperature cut-off switch in a computer from?
- Why does a thermocouple need a reference circuit?
- What strategies are used to help reduce drift in radiation thermal detectors?