Learning Outcomes

- **Sensors**
- Resolution, Sensitivity, Operating Range
- Displacement Sensors
 - Potentiometers
 - Strain Gauges
 - Capacitive Sensors
 - Inductive Sensors
- Temperature Sensors
 - Thermistors
 - Thermocouples
Sensor: device which detects changes in quantities of interest and provides a readable output

Examples

- Thermocouple converts temperature to voltage.
- Mercury thermometer converts temperature to a reading on a calibrated glass tube.
Resolution

- Smallest change measurable

Sensitivity

\[\text{Sensitivity} = \frac{\Delta \text{signal}}{\Delta \text{measurand}} \]
Many sensors have a linear operating range.

Outside this range we have the maximum operating range (that doesn’t damage the instrument)

Thermometer

Reading on thermometer (output)

Temperature (input)

Linear Range

Maximum Range

Melting
Sensor Types:

- **Displacement Sensors:**
 - Resistive
 - Inductive
 - Capacitive
- **Temperature Measurement**
 - Thermistors
 - Thermocouples
- **Also:** time, light, chemical, electromagnetic ...
Potentiometers

Construction
- Wire wound
- Carbon film
- Ceramic
- Conducting plastic

(a) Translational
(b) Single-turn
(c) Multi-turn
If we apply 10V across a single turn potentiometer with 50 wire turns covering 250°.

- What is sensitivity (in volts/degree)?
- What is resolution?

(b) Single-turn

110°
Strain gauge measures strain (deformation) by a change in resistance.

- Measurement circuits typically use Wheatstone bridge

Gauge Factor: measure of gauge sensitivity

\[GF = \frac{\Delta R}{R} / \text{strain} \]

- \(R \): undeformed resistance
- \(\Delta R \): change in \(R \) due to strain
- \text{strain: fractional change in length (}\Delta L/L\text{)}
Strain Gauge: analysis

Gauge Factor

\[G = \frac{\partial R/R}{\partial L/L} = 1 + 2\mu + \frac{\partial \rho/\rho}{\partial L/L} \]

- **Dimensional Effect**
- **Piezoresistive Effect**
 - Metals \(\approx 0 \)
 - Ceramics / Semiconductors have large effect

Examples:
- Metals \(G = 1 + 2(0.3) = 1.6 \)
- n-Si \(G \approx 100 \)
- p-Si \(G \approx -100 \)
 (large temperature drift in semis)
Mercury plethysmograph measures change in leg blood volume after pressure cuff applied (venous occlusion)

- μ for Hg is 0.5
- Calculate $\Delta R/R$ if blood makes 10% increase in diameter

 $$G = 1 + 2 \times 0.5 = 2$$

 $$\Delta R/R = G \times (\Delta R/R) = 0.2$$

Note: Hg no longer used.
Quarter-bridge strain gauge circuit with temperature compensation

Source: https://www.allaboutcircuits.com/textbook/direct-current/chpt-9/strain-gauges/
Initially $R_1 = R_2 = R_3 = R_4 = 1k$

Source $V = 10V$

Strain makes R_4 increase to 1.1k

Strain makes R_2 increase to 1.01k

What is V?
- $V_A = 5V$
- $V_B = 10V \times \frac{R_4}{R_2 + R_4} = 5.21V$
- $V = V_A - V_B = -0.21V$

Temperature increase makes both R_4 and R_2 decrease by 5%. What is V?
Strain Gauges + Bridge Circuits

Source: https://www.allaboutcircuits.com/textbook/direct-current/chpt-9/strain-gauges/
Analysis of SG

\[R = \frac{\rho L}{A} \]

\[\frac{\partial R}{R} = \frac{\partial \rho}{\rho} + \frac{\partial L}{L} - \frac{\partial A}{A} \]

\[\frac{\partial R}{R} = \frac{\partial \rho}{\rho} + (1 + 2 \mu) \frac{\partial L}{L} \]

\[G = \frac{\partial R/R}{\partial L/L} = 1 + 2 \mu + \frac{\partial \rho/\rho}{\partial L/L} \]

Poisson’s Ratio (\(\mu\))

\[\frac{\partial A}{2A} = -\mu \frac{\partial L}{L} \]

For incompressible media \(\mu=0.5\).

Calculate from

Vol = \(D^2L\) is const
Capacitive sensors

- Low cost, small, mechanically strong
- Quite non-linear, better to indicate contact

Source: Salpavaara, et al., 2008.
Capacitive sensors

Electromagnetic analysis

\[C = \varepsilon_0 \varepsilon_r \frac{A}{x} , \quad \varepsilon_0 = 8.86 \times 10^{-12} \frac{F}{m} \]

Permittivity of free space

Relative Permittivity

\[K = \frac{dC}{dx} = -\varepsilon_0 \varepsilon_r \frac{A}{x^2} \]

Non-linear Sensitivity

Electronic Circuit
Inductive Sensors

- Inductance sensor measures displacement by changes in geometry.
- Tend to be non-linear, since geometry to inductance relationship is non-linear.
- Many applications: metal detectors, proximity detector, traffic light car presence detector.
Questions

- What is the Gauge factor? What kinds of materials have large G? When is this useful?
- Why is temperature variation in R of a strain gauge a problem? What strategies can be used to help deal with it?
- Name some applications for inductive sensors?
- Since capacitive sensors are highly non-linear, what kinds of applications are they useful for?
Why measure temperature

- Body is a heat engine. We burn food + oxygen to get energy for life. Temperature monitors the functioning of the engine.
- Temperature increase – hyperthermia
 - typical cause: infection
- Temperature decrease – hypothermia
 - typical cause: shock

Instruments

- Thermistors
- Thermocouples
- Radiation (hot objects emit IR radiation – not included)
thermistor is a type of resistor with resistance varying according to its temperature.

thermal and *resistor* = thermistor

- Biomedical applications: thermometers, flow sensing, breathing (nasal thermistor)
- All resistors have some temperature variation. Thermistors have large tempco (%change/°C)
- Material is generally a ceramic or polymer
As temperature increases, the thermistor resistance decreases, yielding more current that flows through R_f, thus V_o increases.

Many different sizes:
- Small Thermistors are more fragile, faster (2s)
- Larger Thermistors respond slowly (10s)
1B. (5 points) A thermistor, R_T is used in the circuit below. At 35°C, $R_T = 100\Omega$ and at 36°C, $R_T = 101\Omega$. **What is V_O for** at 35°C and 36°C?

1C. (5 points) **What is the sensitivity** of at the output of the sensor, V_O, in V/°C over the range from 35°C to 36°C?

The circuit is a summing inverting amplifier, whose output we can therefore write as

$$V_O = -10\ k\Omega \cdot \frac{10V}{100\Omega} - \frac{10V}{R_T}$$

At 35°C, $R_T = 100\Omega$ and so $V_O = 0V$, while at 36°C, $R_T = 101\Omega$ and so

$$V_O = -\frac{10\ k\Omega}{100\ \Omega} \cdot 1 - \frac{1}{1.01} \cdot (10V) = -9.90V$$

from which the sensitivity is seen to be -9.90 V/°C.
Typical thermistor temperature characteristics for various materials.

Linear model:

\[\Delta R = k \Delta T \]

where

- \(\Delta R \) = change in resistance
- \(\Delta T \) = change in temperature
- \(k \) = first-order temperature coefficient of resistance

Linear model only works over small range.
Based on Seebeck effect: when a conductor (such as a metal) is subjected to a thermal gradient, it will generate a voltage.

Thermocouples measure the temperature difference, not absolute temperature.

Traditionally, one of the junctions—the cold junction—was maintained at a known (reference) temperature, while the other end was attached to a probe.

Thermocouples are faster, smaller, more robust, more linear than thermistors.
Thermocouples: Usage

The hot junction is at the thermocouple. The LT1025 electronic cold junction compensates for ambient temperature changes. The noninverting amplifier provides a high input impedance and high gain.

Type K (chromel–alumel) commonly used general purpose thermocouple. Inexpensive. Available in the −200°C to +1350°C range.
Sensitivity ≈ 41 µV/°C.
Thermocouple or thermistor?

- Cheap
- Mechanically strong
- Simplest electrical circuit
- Capable of high temperatures
- Fastest response
How does a thermistor differ from a thermocouple? Which is more linear? Which is less brittle? Which can have the fastest response?

What would you build the temperature cut-off switch in a computer from?

Why does a thermocouple need a reference circuit?

What strategies are used to help reduce drift in radiation thermal detectors?