Prelab 1A F → MF
Tutorial Thursday 2:30
Lab 1A now posted.

As per outline → Lowest grade in prelab will be dropped.

Electrical Safety (Continued)

Microshock vs. Macroshock

> 1 mA → dangerous

电流 spreads out through the skin
(small amount goes through heart)

Current goes through the heart b/c of intercardiac cathoder

MA → dangerous

Macroshock → ground fault ①

3rd prong

→ current goes through chassis in case of fault

Classes of Equipment

Class I, Class II, Class III (on the slides)

SELV

↓ ① ∇ ①
Electrical Safety Test

- A sample of devices sent to labs
- Samples are tested against a # of tests

Isolation

- Isolation amplifiers

Electrical Isolation

Isolation Technologies

- magnetic
- optical
- Transformers
- Opto isolator

Examples on Slide 1.28 + Sample test Qs on other pages.

We will use optocouplers in this course.

Reading Spec Sheets

Contains info on the features, compliance, pin outs, etc.

Look at compliances to determine tests passed.

Pinout Ex

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

[Diagram of pinout]

(Not used in this course)

Also, check abs. max ratings.

(gives great insight into which part to pick)
Opto-isolator

Diode

\[\text{Value} \rightarrow \text{one way flow} \]

Mech analogy

\[\text{mitral value} \]

\[\text{Heart} \rightarrow \text{Parteral} 120 \text{ mmHg} \]

\[\text{Stenosis} \]

\[160 \text{ mmHg} \]

One way flow drops by \(\approx 0.7 \text{ V} \) as current crosses diode.

Ex.

\[1V \times 1K \Omega \]

\[V_D = 0.7 \text{ V} \]

\[+1V - iR - V_D = 0 \]

\[i = 300 \text{ mA} \]

Light Emitting Diode (LED)

\[\text{Power from } (V_D)i \text{ emitted as light} \]

\[V_D = 10 \text{ SV} \]

\[IR \]

\[2.5 \text{ V} \text{ visible} \]

Simple Transistor Model

If diode ON, transistor man closes the switch. (if i flow through diode)
Opto-transistor

Optoisolator \equiv \text{opto-transistor}

Electrical isolation

Ex. Normal

Case 1: Coffee spill (120V)

Case 2: Lightning (1 MV)

Switches

usually 3 pins

NO \rightarrow \text{Normally open}
 closes when pushed

NC \rightarrow \text{Normally closed}
 opens when pushed

If sees light, closes switch.

Patient OK

transistor burns out

current jumps gap

Patient Shocked

1 MV
Relay

A magnetic wire closer.

If curr. through AA', C pulled to D
NO → C+D
NC → B+C

Now want, when i into CC', relay switches.

Inductor

\[\frac{\mathrm{d}i}{\mathrm{d}t} \]

\[V = L \frac{\mathrm{d}i}{\mathrm{d}t} \]

\[i \]

\[V \rightarrow -\infty \text{V to prevent destroying; refer to } \]