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1 Linear circuit analysis

For each of the circuits shown on the worksheet (Table 2), analyse the response you would
expect to each of the three stimulus waveforms, given the following component values:

Table 1: Component values for the circuits

Circuit R1 R2 C1

(A) 20 kΩ 39 kΩ -
(B) 39 kΩ - 2.2 nF
(C) 20 kΩ 39 kΩ 2.2 nF

In each case:

• Sketch the expected output waveforms in the boxes provided

• Write down the expected peak-to-peak voltage at the output

• Indicate whether you expect the output to lead, lag, or be in phase with
the input signal
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SOLUTION

Circuit (A)

This is a simple voltage divider: the voltage
appearing across the output terminals is a
fraction R2/(R1 + R2) of that at the input.
With R1 = 20kΩ and R1 = 39kΩ,

V

Vs
=

39

20 + 39
= 0.66

so with 2 Vp−p in, we should measure
1.32 Vp−p at the output. Neglecting para-
sitics (which should be insignificant at these
frequencies) the response should be indepen-
dent of frequency, so you should see the same
peak-to-peak voltage for all three input sig-
nals, and all three should be in phase with
the driving signal.

Circuit (B)

Sinusoidal inputs: This circuit is also a
voltage divider, however its response de-
pends on frequency as a result of the capac-
itor’s frequency-dependent impedance ZC =
1/jωC i.e.

V

Vs
=

ZC
R1 + ZC

=
1/jωC1

R1 + 1/jωC1

=
1

1 + jωC1R1

The magnitude of the response will be given
by ∣∣∣∣ VVs

∣∣∣∣ =

(
1

1 + ω2C2
1R

2
1

)1/2

At f = 1 kHz, ω = 2πf = 6283 rad.s−1,
and taking R1 = 39kΩ and C1 = 2.2nF ,
ωC1R1 = 0.539 so∣∣∣∣ VVs

∣∣∣∣ =

(
1

1 + 0.5392

)1/2

= 0.880

so that the 2 Vp−p input becomes 1.76 V at
the output; while at f = 10 kHz, ω = 2πf =
62831 rad.s−1, so that∣∣∣∣ VVs

∣∣∣∣ =

(
1

1 + 5.392

)1/2

= 0.182

giving Vp−p = 365 mV at the output. In both
cases the phase of the output lags the input:
this is easiest to see if we re-write the response
as

V

Vs
=

1

1 + jωCR1

=
1− jωC1R1

1 + ω2C2
1R

2
1

indicating a phase angle

φ = tan−1 (−ωC1R1)

The lag increases from 0◦ at DC towards−90◦

as ω → ∞. At f = 1 kHz, φ = −28.3◦, and
at f = 10 kHz, φ = −79.5◦.
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Squarewave input (direct method): Let
the voltage across C1 be v(t). Then the cur-
rent through R1 is

i(t) =
vs − v
R1

Meanwhile, the charge on C1 is q = C1v, so
that

i =
dq

dt
= C1

dv

dt

Equating, we have

C1
dv

dt
=
vs − v
R1

dv

dt
+

1

R1C1

v =
1

R1C1

vs(t)

This type of first-order inhomogeneous ODE
is easily solved using an integrating factor

φ(t) = exp

(
t

R1C1

)
= exp (t/τ)

such that

d

dt
φv = φ

dv

dt
+
dφ

dt
v = φ

dv

dt
+

1

τ
φv

allowing us to write the LHS as a total deriva-
tive, giving

d

dt
φv =

1

τ
φvs(t)

with solution

φv =
1

τ

∫
φvsdt+ const.

Now consider the unit step response of the cir-
cuit; that is, if we start with vs in steady state
at 0 V and the capacitor uncharged, then in-
stantaneously apply a voltage vs = 1 V at
time t = 0

vs(t) =

{
0 t < 0
1 t ≥ 0

so that

et/τv − e0/τ (0 V ) =
1

τ

∫ t

0

et
′/τdt′ = et/τ − 1

Dividing through by et/τ , we get

v(t) = 1− exp (−t/τ) V t ≥ 0

which starts from 0 V and rises asymptot-
ically towards 1 V with time constant τ =
R1C1.

In our case, we have a square wave that
switches (near) instantaneously from -1 V to
+1 V rather than from 0 V to +1 V, so the
response is scaled by a factor 2 and shifted
down by 1 V i.e.

v(t) = 1− 2 exp (−t/τ) V

By symmetry, the turn-off response is

v(t) = −1 + 2 exp (−t/τ) V

where t = 0 now corresponds to the falling
edge of the input square wave.

The peak-to-peak output swing will be de-
termined by how closely the response ap-
proaches the asymptote in each half-cycle of
the square wave i.e.

vp−p = 2

[
1− exp

(
− T/2

R1C1

)]
V

With τ = R1C1 = (39 kΩ)(2.2 nF ) = 85.8 µs
and T/2 = 500µs, we should observe vp−p =
1.99 V i.e. it should essentially reach its final
value.
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Squarewave input (transform method):
As an alternative to direct integration in the
time domain, we could analyse the response
using Laplace transform methods, starting
from the response we wrote down for the si-
nusoidal inputs

H(s) =
V

Vs
=

1

1 + jωC1R1

=
1

1 + sτ

Now consider the unit step response. Since
u(t) has Laplace transform

u(t) �
1

s

we can write the output as

V (s) = H(s).
1

s
=

1

s(1 + sτ)

Using partial fractions

1

s(1 + sτ)
=
A

s
+

B

1 + sτ

1 = A(1 + sτ) +Bs

i.e. A = 1, B = −τ we get

V (s) =
1

s
− τ

1 + sτ

Inverting each term using tables,

v(t) = 1− exp (−t/τ) t ≥ 0

Since our actual input is ±1 V , the output
will be scaled and shifted i.e.

v(t) = 2 [1− exp (−t/τ)]− 1 t ≥ 0

= 1− 2 exp (−t/τ) V t ≥ 0
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Circuit (C)

Sinusoidal inputs: A slightly more compli-
cated frequency-dependent voltage divider:
just like (B), we can write down the response
in terms of the component impedances as

V

Vs
=

R2

R1 +R2 + ZC

=
R2

R1 +R2 + 1/jωC1

It’s instructive to split this as

V

Vs
=

(
R2

R1 +R2

)
.

(
R1 +R2

R1 +R2 + 1/jωC1

)

=

(
R2

R1 +R2

)
.

(
jωRC1

1 + jωRC1

)
from which we can see that the overall re-
sponse will consist of a first-order high pass
filter (HPF) with cutoff frequency fc =
[2π(R1 + R2)C1]

−1 multiplied by a simple
frequency-independent voltage divider.

The magnitude of the response will be given
by ∣∣∣∣ VVs

∣∣∣∣ =

(
R2

R1 +R2

)
.

(
ω2R2C2

1

1 + ω2R2C2
1

)1/2

At f = 1 kHz, ω = 2πf = 6283 rad.s−1,
and taking R1 = 20kΩ, R2 = 39kΩ and
C1 = 2.2nF , ωC1(R1 +R2) = 0.815 so∣∣∣∣ VVs

∣∣∣∣ =

(
0.8152

1 + 0.8152

)1/2

= 0.632

Using the result from (A), the net response
at f = 1 kHz is then∣∣∣∣ VVs

∣∣∣∣ = (0.66)(0.632) = 0.418

so that the 2 Vp−p input becomes approxi-
mately 0.84 Vp−p.

At f = 10 kHz, ωC1(R1 +R2) = 17.4, and(
8.152

1 + 8.152

)1/2

= 0.993

i.e. we are far enough above the cutoff fre-
quency that the signal is passed without sig-
nificant attenuation: the response is domi-
nated by the resistive divider and the peak-
to-peak output voltage will be the same as
for circuit (A), i.e. 1.32 Vp−p

By writing

jωRC1

1 + jωRC1

× 1− jωRC1

1− jωRC1

=
ω2R2C2

1 + jωRC1

1 + ω2R2C2
1

we can see that the output will lead the input,
with a positive phase angle

φ = tan−1
[

1

ωC1(R1 +R2)

]
The lead decreases from 90◦ at DC towards
0◦ as ω →∞. At f = 1 kHz, φ = 50.8◦, and
at f = 10 kHz, φ = 7.0◦ - almost in phase.
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Squarewave input (direct method): The
voltage vC across C1 can be written using
Kirchhoff’s Laws and Ohm’s Law as

vC = vs − iR1 − iR2

where as for circuit (B),

i =
dq

dt
= C1

dvC
dt

Hence

dvC
dt

+
vC

(R1 +R2)C1

=
1

(R1 +R2)C1

vs

This is the same equation that you solved in
(B) for v(t) i.e. its unit step response is given
by

vC(t) =

{
1− exp (−t/τ) V t ≥ 0
0 otherwise

this time with τ = (R1 +R2)C1. From KVL,
the sum of the voltages across R1 and R2 is
whatever remains i.e. 1− vC , and the output
voltage v(t) is the fraction of that across R2.

Hence the unit step response of the circuit as
a whole for t ≥ 0 is

v(t) =
R2

R1 +R2

exp (−t/τ) V t ≥ 0

Our actual square wave input is a sequence of
2 V positive going steps and -2 V negative go-
ing steps, so in each complete cycle of input,
the output will spike up to

v+ = 2

(
R2

R1 +R2

)
V

and then decay exponentially down towards
0 V with time constant τ = (R1 +R2)C1, and
then spike down to

v− = −2

(
R2

R1 +R2

)
V

before decaying back towards 0 V with the
same time constant. The peak-to-peak out-
put swing will therefore be

vp−p = 4

(
R2

R1 +R2

)
V

or approximately 2.64 V. You will probably
observe a value significantly less than this,
likely due to the finite rise and fall times of
the Picoscope source.

Squarewave input (transform method):
From the preceding frequency domain anal-
ysis, we have that

H(s) =
V

Vs
=

(
R2

R1 +R2

)
.

(
jωRC1

1 + jωRC1

)

=

(
R2

R1 +R2

)
.
sτ

1 + sτ

Now consider the unit step response. Since
u(t) has Laplace transform

u(t) �
1

s

we can write the output as

V (s) = H(s).
1

s

=

(
R2

R1 +R2

)
.

τ

1 + sτ

which (from elementary tables) gives the time
domain response

v(t) =

(
R2

R1 +R2

)
. exp (−t/τ)

With a 2 V peak-to-peak square wave input,
the output will be twice this, as before.
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2 Circuit measurements

Construct each of the circuits using one of the solderless breadboards provided. Using the
Picoscope at your workstation, apply each of the input signals in turn and carefully measure
the circuit’s output.

Compare the measured results with those from your analysis. Are the discrepancies sig-
nificant? Try to explain any differences.

3 Rise and fall times

Return to circuit (B) with the square-wave input. If you did not already do so, calculate the
circuit’s time constant. Use this result to calculate the expected 20-80 % rise and fall times
for this circuit.

Solution: Using the unit step response cal-
culated previously

v(t) = 1− exp (−t/τ) V t ≥ 0

we need to solve

0.2 = 1− exp (−t1/τ)

0.8 = 1− exp (−t2/τ)

for t2 − t1.

Rearranging

0.8 = exp (−t1/τ)

0.2 = exp (−t2/τ)

and dividing top by bottom

0.8

0.2
= exp ((t2 − t1)/τ)

i.e.

t2 − t1 = τ ln 4

Note: if you want the 10%-90% times, just
replace ln 4 by ln 9.

Time constant τ (ms) 20-80 % risetime tr 80-20 % falltime tf
0.0858 119 µs 119 µs

• Calculate the 20 % and 80 % voltage levels, given a 2 V p-p input signal

Solution: 20% of 2 V is 0.4 V and 80% is 1.6 V, measured up from -1 V

20 % level (mV) 80 % level (mV)
-0.6 V +0.6 V

• Use the Picoscope’s moveable vertical and horizontal markers to estimate
the rise time (20-80%) and fall time (80-20%) of the output signal (Figure 1)

• Repeat your measurement using the Picoscope’s automated measurement
feature. Does the result agree with your manual measurement?
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Calculated Measured
20-80 % risetime tr 119 µs
80-20 % falltime tf 119 µs

Figure 1: Rise and fall time measurement

Show your results to your instructor
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