The op-amp is ideal, with $V_{CC} = 10\,\text{V}$ and $V_{EE} = -10\,\text{V}$. The diode forward voltage, $V_D = 0.7\,\text{V}$.

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

This is a Wien bridge sine-wave oscillator. It oscillates because $G = 1 + \frac{83\,\text{k}\Omega}{20\,\text{k}\Omega} = 5.15 > 3$.

- What is the frequency of oscillation.
 \[
 \omega = (RC)^{-1} = (39\,\text{k}\Omega \times 28\,\text{nF})^{-1} = 915.8\,\text{rad/s}
 \]
 \[
 f = \frac{1}{2\pi}\omega = 145.8\,\text{Hz}
 \]
- Sketch V_o when the oscillation amplitude has stabilized.
 The oscillation will be roughly sine shaped at $f = 145.8\,\text{Hz}$
- Indicate the approximate voltage of oscillation on the sketch.
 amplitude stabilized at $\pm 0.7\,\text{V}$.

The op-amp is ideal, with $V_{CC} = 2\,V$ and $V_{EE} = -2\,V$.

\[\begin{array}{c}
\begin{array}{c}
73\,k\Omega \\
38\,k\Omega \\
39\,nF \\
28\,k\Omega \\
\end{array} \\
\end{array} \begin{array}{c}
\uparrow \\
\downarrow \\
\circlearrowleft \\
\circlearrowright \\
V_o \\
\end{array} \]

Initial conditions are: $V_- = 0$ and $V_o = +V_{CC}$.

Sketch as a function of time: 1) V_-, 2) V_+, 3) V_o

- V_o will switch between $\pm 2\,V$
- V_+ will switch between $\pm 2\,V$ where $\frac{73\,k\Omega}{73\,k\Omega + 38\,k\Omega} = 1.32\,V$
- V_+ will exponentially rise between $\pm 1.32\,V$.

Timing will be symmetric between +ve and -ve pulses.

\[(V_f - V_\infty) = (V_i - V_\infty)e^{-t/\tau},\]

were $\tau = RC = 28\,k\Omega \times 39\,nF = 1.092\,ms$

For the -ve transition, $V_i = 1.32\,V$, $V_f = -1.32\,V$, and $V_\infty = -2\,V$.

\[t = \tau \ln \left(\frac{V_f - V_\infty}{V_i - V_\infty} \right) = (1.092\,ms) \ln \left(\frac{1.32 - (-2)}{-1.32 - (-2)} \right) = 1.73\,ms \]
Initial conditions are that the charge on the capacitor is zero. $V_{CC} = 9 \text{ V}$.

- Sketch V_o, V_A and V_B.
- What is the length of the $V_o = \text{high}$ and $V_o = \text{low}$ outputs?

This configuration is similar, but not the same as the configuration discussed in class. Normally V_+ of the upper comparator is connected to V_B. This means that the upper transitions will not happen at $V_B = \frac{2}{3}V_{CC}$, but instead when $V_A = \frac{2}{3}V_{CC}$. At this time, we calculate

$$i = (V_{CC} - \frac{2}{3}V_{CC})/59 \text{ k}\Omega = (9 \text{ V} - 6 \text{ V})/59 \text{ k}\Omega = 3 \text{ V}/59 \text{ k}\Omega = 50.85 \mu\text{A}.$$

Using i, we calculate $V_B = V_A - i(12 \text{ k}\Omega) = 5.39 \text{ V}$.

Another way to see this is to think about Capacitor C charging until $V_A = \frac{2}{3}V_{CC}$ (RESET) and discharging until $V_B = \frac{1}{3}V_{CC}$ (SET). In the usual 555 astable configuration, the trigger and threshold pins (pins 2 and 6) are both connected to the top of C, so $V_A = V_B$, however in the above circuit V_A and V_B are related by

$$V_A = V_B + (V_{CC} - V_B) \frac{R_B}{R_A + R_B}$$

(voltage divider). Setting $V_A = \frac{2}{3}V_{CC}$ and rearranging, RESET occurs when V_B reaches voltage V_R given by

$$V_R = \left(\frac{2}{3} - \frac{R_B}{R_A + R_B} \right) \frac{R_A + R_B}{R_A} V_{CC}$$

$$V_R = \left(\frac{2}{3} - \frac{12 \text{ k}\Omega}{59 \text{ k}\Omega + 12 \text{ k}\Omega} \right) \frac{59 \text{ k}\Omega + 12 \text{ k}\Omega}{59 \text{ k}\Omega} 9 \text{ V} = 5.39 \text{ V}$$

The durations of the charge and discharge half-cycles are then given by the usual formula

$$t = RC \ln \left(\frac{V_\infty - V_i}{V_\infty - V_f} \right) = (0.51)RC$$
with $V_i = V_{CC}/3$, $V_f = V_R$, $V_\infty = V_{CC}$ and $R = R_A + R_B$ for the charge half-cycle and $V_i = V_R$, $V_f = V_{CC}/3$, $V_\infty = 0$ and $R = R_B$ for the discharge half-cycle. $V_o = V_{CC}$ during the charge period and $V_o = 0$ V during the discharge period. Thus:

- $t_{\text{high}} = 0.51 \times 51 \mu F \times (59 \text{k}\Omega + 12 \text{k}\Omega) = 1.85 \text{ ms}$
- $t_{\text{low}} = 0.51 \times 51 \mu F \times (12 \text{k}\Omega) = 0.31 \text{ ms}$

The shape of V_B is essentially the same as that of the regular 555 astable configuration, rising and falling exponentially between the two limits - except that the upper limit is V_R instead of $2/3V_{CC}$. Meanwhile V_A rises exponentially from somewhat above $1/3V_{CC}$ to $2/3V_{CC}$, and then drops immediately to zero for the duration of the discharge half-cycle since it is connected directly to the discharge pin (pin 7).