The op-amp is ideal, with $V_{CC} = 10\,\text{V}$ and $V_{EE} = -10\,\text{V}$. The diode forward voltage, $V_D = 0.7\,\text{V}$.

This is a Wien bridge sine-wave oscillator. It oscillates because
\[G = 1 + \frac{92\,\text{k}\Omega}{22\,\text{k}\Omega} = 5.18 > 3. \]

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

\[\omega = (RC)^{-1} = (22\,\text{k}\Omega \times 31\,\text{nF})^{-1} = 1466.3\,\text{rad/s} \]
\[f = \frac{1}{2\pi}\omega = 233.4\,\text{Hz} \]

- Sketch V_o when the oscillation amplitude has stabilized.
 The oscillation will be roughly sine shaped at $f = 233.4\,\text{Hz}$
- Indicate the approximate voltage of oscillation on the sketch.
 Amplitude stabilized at $\pm0.7\,\text{V}$.
The op-amp is ideal, with $V_{CC} = 2$ V and $V_{EE} = -2$ V.

Initial conditions are: $V_- = 0$ and $V_o = +V_{CC}$.

Sketch as a function of time: 1) V_-, 2) V_+, 3) V_o

- V_o will switch between ± 2 V
- V_+ will switch between ± 2 V $\frac{55 \text{k}\Omega}{55 \text{k}\Omega + 29 \text{k}\Omega} = 1.31$ V
- V_+ will exponentially rise between ± 1.31 V.

Timing will be symmetric between +ve and -ve pulses.

$$(V_f - V_\infty) = (V_i - V_\infty)e^{-t/\tau},$$

were $\tau = RC = 31 \text{k}\Omega \times 22 \text{nF} = 0.682$ ms

For the -ve transition, $V_i = 1.31$ V, $V_f = -1.31$ V, $V_\infty = -2$ V.

$$t = \tau \ln \left(\frac{V_f - V_\infty}{V_i - V_\infty} \right) = (0.682 \text{ ms}) \ln \left(\frac{1.31 - (-2)}{-1.31 - (-2)} \right) = 1.07 \text{ ms}$$
Initial conditions are that the charge on the capacitor is zero. $V_{CC} = 9 \text{ V}$.

- Sketch V_o, V_A and V_B.
- What is the length of the $V_o = \text{high}$ and $V_o = \text{low}$ outputs?

This configuration is similar, but not the same as the configuration discussed in class. Normally V_+ of the upper comparator is connected to V_B. This means that the upper transitions will not happen at $V_B = \frac{2}{3} V_{CC}$, but instead when $V_A = \frac{2}{3} V_{CC}$. At this time, we calculate

$$i = (V_{CC} - \frac{2}{3} V_{CC})/32 \text{ k}\Omega = (9 \text{ V} - 6 \text{ V})/32 \text{ k}\Omega = 3 \text{ V}/32 \text{ k}\Omega = 93.75 \mu\text{A}.$$

Using i, we calculate $V_B = V_A - i(14 \text{ k}\Omega) = 4.69 \text{ V}$.

Another way to see this is to think about Capacitor C charging until $V_A = 2/3 V_{CC}$ (RESET) and discharging until $V_B = 1/3 V_{CC}$ (SET). In the usual 555 astable configuration, the trigger and threshold pins (pins 2 and 6) are both connected to the top of C, so $V_A = V_B$, however in the above circuit V_A and V_B are related by

$$V_A = V_B + (V_{CC} - V_B) \frac{R_B}{R_A + R_B}$$

(voltage divider). Setting $V_A = 2/3 V_{CC}$ and rearranging, RESET occurs when V_B reaches voltage V_R given by

$$V_R = \left(\frac{2}{3} - \frac{14 \text{ k}\Omega}{32 \text{ k}\Omega + 14 \text{ k}\Omega}\right) \left(\frac{32 \text{ k}\Omega + 14 \text{ k}\Omega}{32 \text{ k}\Omega}\right) 9 \text{ V} = 4.69 \text{ V}$$

The durations of the charge and discharge half-cycles are then given by the usual formula

$$t = RC \ln \left(\frac{V_{\infty} - V_i}{V_{\infty} - V_f}\right) = (0.33)RC$$
with \(V_i = \frac{V_{CC}}{3} \), \(V_f = V_R \), \(V_\infty = V_{CC} \) and \(R = R_A + R_B \) for the charge half-cycle and \(V_i = V_R \), \(V_f = \frac{V_{CC}}{3} \), \(V_\infty = 0 \) and \(R = R_B \) for the discharge half-cycle. \(V_o = V_{CC} \) during the charge period and \(V_o = 0 \) V during the discharge period. Thus:

- \(t_{\text{high}} = 0.33 \times 56 \mu F \times (32 \, k\Omega + 14 \, k\Omega) = 0.85 \, ms \)
- \(t_{\text{low}} = 0.33 \times 56 \mu F \times (14 \, k\Omega) = 0.26 \, ms \)

The shape of \(V_B \) is essentially the same as that of the regular 555 astable configuration, rising and falling exponentially between the two limits - except that the upper limit is \(V_R \) instead of \(\frac{2}{3}V_{CC} \). Meanwhile \(V_A \) rises exponentially from somewhat above \(\frac{1}{3}V_{CC} \) to \(\frac{2}{3}V_{CC} \), and then drops immediately to zero for the duration of the discharge half-cycle since it is connected directly to the discharge pin (pin 7).