The op-amp is ideal, with $V_{CC} = 10\,\text{V}$ and $V_{EE} = -10\,\text{V}$. The diode forward voltage, $V_D = 0.7\,\text{V}$.

This is a Wien bridge sine-wave oscillator. It oscillates because $G = 1 + \frac{73\,\text{k}\Omega}{24\,\text{k}\Omega} = 4.04 > 3$.

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

$\omega = (RC)^{-1} = (39\,\text{k}\Omega \times 31\,\text{nF})^{-1} = 827.1\,\text{rad/s}$

$f = \frac{1}{2\pi}\omega = 131.6\,\text{Hz}$

- Sketch V_o when the oscillation amplitude has stabilized.
 The oscillation will be roughly sine shaped at $f = 131.6\,\text{Hz}$

- Indicate the approximate voltage of oscillation on the sketch. amplitude stabilized at $\pm 0.7\,\text{V}$.
The op-amp is ideal, with $V_{CC} = 2\, \text{V}$ and $V_{EE} = -2\, \text{V}$.

Initial conditions are: $V_\text{−} = 0$ and $V_\text{o} = +V_{CC}$.

Sketch as a function of time: 1) $V_\text{−}$, 2) $V_\text{+}$, 3) V_o

- V_o will switch between $\pm 2\, \text{V}$
- $V_\text{+}$ will switch between $\pm 2\, \text{V}$ with $\frac{48\, \text{k\Omega}}{48\, \text{k\Omega} + 37\, \text{k\Omega}} = 1.13\, \text{V}$
- $V_\text{+}$ will exponentially rise between $\pm 1.13\, \text{V}$.

Timing will be symmetric between +ve and -ve pulses.

\[
(V_f - V_\infty) = (V_i - V_\infty)e^{-t/\tau},
\]
where $\tau = RC = 31\, \text{k}\Omega \times 39\, \text{nF} = 1.209\, \text{ms}$

For the -ve transition, $V_i = 1.13\, \text{V}$, $V_f = -1.13\, \text{V}$, and $V_\infty = -2\, \text{V}$.

\[
t = \tau \ln \left(\frac{V_f - V_\infty}{V_i - V_\infty} \right) = (1.209\, \text{ms}) \ln \left(\frac{1.13 - (-2)}{-1.13 - (-2)} \right) = 1.55\, \text{ms}
\]
Initial conditions are that the charge on the capacitor is zero. $V_{CC} = 9\, V$.

- Sketch V_o, V_A and V_B.
- What is the length of the $V_o = \text{high}$ and $V_o = \text{low}$ outputs?

This configuration is similar, but not the same as the configuration discussed in class. Normally $V_\text{+}$ of the upper comparator is connected to V_B. This means that the upper transitions will not happen at $V_B = \frac{2}{3}V_{CC}$, but instead when $V_A = \frac{2}{3}V_{CC}$. At this time, we calculate

$$i = \left(\frac{V_{CC} - \frac{2}{3}V_{CC}}{58\, \text{k}\Omega}\right) = \frac{9\, V - 6\, V}{58\, \text{k}\Omega} = \frac{3\, V}{58\, \text{k}\Omega} = 51.72 \, \mu\text{A}.$$

Using i, we calculate $V_B = V_A - i(16\, \text{k}\Omega) = 5.17\, V$.

Another way to see this is to think about Capacitor C charging until $V_A = 2/3V_{CC}$ (RESET) and discharging until $V_B = 1/3V_{CC}$ (SET). In the usual 555 astable configuration, the trigger and threshold pins (pins 2 and 6) are both connected to the top of C, so $V_A = V_B$, however in the above circuit V_A and V_B are related by

$$V_A = V_B + (V_{CC} - V_B)\frac{R_B}{R_A + R_B} \text{ (voltage divider).}$$

Setting $V_A = 2/3V_{CC}$ and rearranging, RESET occurs when V_B reaches voltage V_R given by

$$V_R = \left(\frac{2}{3} - \frac{16\, \text{k}\Omega}{58\, \text{k}\Omega + 16\, \text{k}\Omega}\right)\left(\frac{58\, \text{k}\Omega + 16\, \text{k}\Omega}{58\, \text{k}\Omega}\right)9\, V = 5.17\, V$$

The durations of the charge and discharge half-cycles are then given by the usual formula

$$t = RC \ln \left(\frac{V_\infty - V_i}{V_\infty - V_f}\right) = (0.45)RC$$
with $V_i = V_{CC}/3$, $V_f = V_R$, $V_\infty = V_{CC}$ and $R = R_A + R_B$ for the charge half-cycle and $V_i = V_R$, $V_f = V_{CC}/3$, $V_\infty = 0$ and $R = R_B$ for the discharge half-cycle. $V_o = V_{CC}$ during the charge period and $V_o = 0$ V during the discharge period. Thus:

- $t_{\text{high}} = 0.45 \times 47 \, \mu F \times (58 \, k\Omega + 16 \, k\Omega) = 1.57 \, ms$
- $t_{\text{low}} = 0.45 \times 47 \, \mu F \times (16 \, k\Omega) = 0.34 \, ms$

The shape of V_B is essentially the same as that of the regular 555 astable configuration, rising and falling exponentially between the two limits - except that the upper limit is V_R instead of $2/3V_{CC}$. Meanwhile V_A rises exponentially from somewhat above $1/3V_{CC}$ to $2/3V_{CC}$, and then drops immediately to zero for the duration of the discharge half-cycle since it is connected directly to the discharge pin (pin 7).