The op-amp is ideal, with $V_{CC} = 10\,\text{V}$ and $V_{EE} = -10\,\text{V}$. The diode forward voltage, $V_D = 0.7\,\text{V}$.

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

This is a Wien bridge sine-wave oscillator. It oscillates because $G = 1 + \frac{89\,\text{k}\Omega}{22\,\text{k}\Omega} = 5.05 > 3$.

- What is the frequency of oscillation.

 $\omega = (RC)^{-1} = (27\,\text{k}\Omega \times 39\,\text{nF})^{-1} = 949.7\,\text{rad/s}$

 $f = \frac{1}{2\pi}\omega = 151.2\,\text{Hz}$

- Sketch V_o when the oscillation amplitude has stabilized.

 The oscillation will be roughly sine shaped at $f = 151.2\,\text{Hz}$

- Indicate the approximate voltage of oscillation on the sketch.

 amplitude stabilized at $\pm 0.7\,\text{V}$.

The op-amp is ideal, with $V_{CC} = 2$ V and $V_{EE} = -2$ V.

Initial conditions are: $V_0 = 0$ and $V_o = +V_{CC}$.

Sketch as a function of time: 1) V_-, 2) V_+, 3) V_o

- V_o will switch between ± 2 V
- V_+ will switch between $\pm 2 \sqrt{\frac{69 \text{k}\Omega}{69 \text{k}\Omega + 31 \text{k}\Omega}} = 1.38$ V
- V_+ will exponentially rise between ± 1.38 V.

Timing will be symmetric between +ve and -ve pulses.

$$(V_f - V_\infty) = (V_i - V_\infty)e^{-t/\tau},$$

were $\tau = RC = 39 \text{k}\Omega \times 27 \text{nF} = 1.053$ ms

For the -ve transition, $V_i = 1.38$ V, $V_f = -1.38$ V, an $V_\infty = -2$ V.

$$t = \tau \ln \left(\frac{V_f - V_\infty}{V_i - V_\infty} \right) = (1.053 \text{ ms}) \ln \left(\frac{1.38 - (-2)}{-1.38 - (-2)} \right) = 1.79 \text{ ms}$$
Initial conditions are that the charge on the capacitor is zero. $V_{CC} = 9\, V$.

- Sketch V_o, V_A and V_B.
- What is the length of the $V_o = \text{high}$ and $V_o = \text{low}$ outputs?

This configuration is similar, but not the same as the configuration discussed in class. Normally V_+ of the upper comparator is connected to V_B. This means that the upper transitions will not happen at $V_B = \frac{2}{3}V_C C$, but instead when $V_A = \frac{2}{3}V_C C$. At this time, we calculate

$$i = (V_{CC} - \frac{2}{3}V_{CC})/41\, k\Omega = (9\, V - 6\, V)/41\, k\Omega = 3\, V/41\, k\Omega = 73.17\, \mu A.$$
Using i, we calculate $V_B = V_A - i(14\, k\Omega) = 4.98\, V$.

Another way to see this is to think about Capacitor C charging until $V_A = 2/3V_{CC}$ (RESET) and discharging until $V_B = 1/3V_{CC}$ (SET). In the usual 555 astable configuration, the trigger and threshold pins (pins 2 and 6) are both connected to the top of C, so $V_A = V_B$, however in the above circuit V_A and V_B are related by

$$V_A = V_B + (V_{CC} - V_B)\frac{R_B}{R_A + R_B}$$
(voltage divider). Setting $V_A = 2/3V_{CC}$ and rearranging, RESET occurs when V_B reaches voltage V_R given by

$$V_R = \left(\frac{2}{3} - \frac{R_B}{R_A + R_B}\right)\left(\frac{R_A + R_B}{R_A}\right)V_{CC}$$

$$V_R = \left(\frac{2}{3} - \frac{14\, k\Omega}{41\, k\Omega + 14\, k\Omega}\right)\left(\frac{41\, k\Omega}{41\, k\Omega}\right)9\, V = 4.98\, V$$

The durations of the charge and discharge half-cycles are then given by the usual formula

$$t = RC\ln\left(\frac{V_{\infty} - V_i}{V_{\infty} - V_f}\right) = (0.40)RC$$
with $V_i = \frac{V_{CC}}{3}$, $V_f = V_R$, $V_\infty = V_{CC}$ and $R = R_A + R_B$ for the charge half-cycle and $V_i = V_R$, $V_f = \frac{V_{CC}}{3}$, $V_\infty = 0$ and $R = R_B$ for the discharge half-cycle. $V_o = V_{CC}$ during the charge period and $V_o = 0$ V during the discharge period. Thus:

- $t_{\text{high}} = 0.40 \times 55 \mu F \times (41 \, k\Omega + 14 \, k\Omega) = 1.21$ ms
- $t_{\text{low}} = 0.40 \times 55 \mu F \times (14 \, k\Omega) = 0.31$ ms

The shape of V_B is essentially the same as that of the regular 555 astable configuration, rising and falling exponentially between the two limits - except that the upper limit is V_R instead of $2/3V_{CC}$. Meanwhile V_A rises exponentially from somewhat above $\frac{1}{3}V_{CC}$ to $\frac{2}{3}V_{CC}$, and then drops immediately to 0 for the duration of the discharge half-cycle since it is connected directly to the discharge pin (pin 7).