The op-amp is ideal, with $V_{CC} = 10\,V$ and $V_{EE} = -10\,V$. The diode forward voltage, $V_D = 0.7\,V$.

This is a Wien bridge sine-wave oscillator. It oscillates because $G = 1 + \frac{84\,k\Omega}{25\,k\Omega} = 4.36 > 3$.

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

\[
\omega = (RC)^{-1} = (20\,k\Omega \times 28\,\text{nF})^{-1} = 1785.7\,\text{rad/s}
\]
\[
f = \frac{1}{2\pi} \omega = 284.2\,\text{Hz}
\]

- Sketch V_o when the oscillation amplitude has stabilized.
 The oscillation will be roughly sine shaped at $f = 284.2\,\text{Hz}$
- Indicate the approximate voltage of oscillation on the sketch.
 amplitude stabilized at $\pm 0.7\,\text{V}$.
The op-amp is ideal, with \(V_{CC} = 2 \) V and \(V_{EE} = -2 \) V.

![Circuit Diagram]

Initial conditions are: \(V_- = 0 \) and \(V_o = +V_{CC} \).

Sketch as a function of time: 1) \(V_- \), 2) \(V_+ \), 3) \(V_o \)

- \(V_o \) will switch between \(\pm 2 \) V
- \(V_+ \) will switch between \(\pm 2 \) V \(\frac{61 \, \text{k}\Omega}{61 \, \text{k}\Omega + 23 \, \text{k}\Omega} = 1.45 \) V
- \(V_+ \) will exponentially rise between \(\pm 1.45 \) V.

Timing will be symmetric between +ve and -ve pulses.

\((V_f - V_\infty) = (V_i - V_\infty)e^{-t/\tau} \),

were \(\tau = RC = 28 \, \text{k}\Omega \times 20 \, \text{nF} = 0.560 \) ms

For the -ve transition, \(V_i = 1.45 \) V, \(V_f = -1.45 \) V, an \(V_\infty = -2 \) V.

\[
t = \tau \ln \left(\frac{V_f - V_\infty}{V_i - V_\infty} \right) = (0.560 \, \text{ms}) \ln \left(\frac{1.45 - (-2)}{-1.45 - (-2)} \right) = 1.03 \, \text{ms}
\]
Initial conditions are that the charge on the capacitor is zero. $V_{CC} = 9 \text{ V}$.

- Sketch V_o, V_A and V_B.
- What is the length of the $V_o = \text{high}$ and $V_o = \text{low}$ outputs?

This configuration is similar, but not the same as the configuration discussed in class. Normally V_+ of the upper comparator is connected to V_B. This means that the upper transitions will not happen at $V_B = \frac{2}{3}V_{CC}$, but instead when $V_A = \frac{2}{3}V_{CC}$. At this time, we calculate

$$i = \left(V_{CC} - \frac{2}{3}V_{CC} \right) / 30 \text{ k}\Omega = (9 \text{ V} - 6 \text{ V}) / 30 \text{ k}\Omega = 3 \text{ V} / 30 \text{ k}\Omega = 100.00 \mu\text{A}.$$

Using i, we calculate $V_B = V_A - i(17 \text{ k}\Omega) = 4.30 \text{ V}$.

Another way to see this is to think about Capacitor C charging until $V_A = 2/3V_{CC}$ (RESET) and discharging until $V_B = 1/3V_{CC}$ (SET). In the usual 555 astable configuration, the trigger and threshold pins (pins 2 and 6) are both connected to the top of C, so $V_A = V_B$, however in the above circuit V_A and V_B are related by

$$V_A = V_B + (V_{CC} - V_B) \frac{R_B}{R_A + R_B}$$

(voltage divider). Setting $V_A = 2/3V_{CC}$ and rearranging, RESET occurs when V_B reaches voltage V_R given by

$$V_R = \left(\frac{2}{3} - \frac{R_B}{R_A + R_B} \right) \left(\frac{R_A + R_B}{R_A} \right) V_{CC}$$

$$V_R = \left(\frac{2}{3} - \frac{17 \text{ k}\Omega}{30 \text{ k}\Omega + 17 \text{ k}\Omega} \right) \left(\frac{30 \text{ k}\Omega + 17 \text{ k}\Omega}{30 \text{ k}\Omega} \right) 9 \text{ V} = 4.30 \text{ V}$$

The durations of the charge and discharge half-cycles are then given by the usual formula

$$t = RC \ln \left(\frac{V_\infty - V_i}{V_\infty - V_f} \right) = (0.24)RC$$
with $V_i = V_{CC}/3$, $V_f = V_R$, $V_\infty = V_{CC}$ and $R = R_A + R_B$ for the charge half-cycle and $V_i = V_R$, $V_f = V_{CC}/3$, $V_\infty = 0$ and $R = R_B$ for the discharge half-cycle. $V_o = V_{CC}$ during the charge period and $V_o = 0$ V during the discharge period. Thus:

- $t_{\text{high}} = 0.24 \times 52 \mu F \times (30 \text{k}\Omega + 17 \text{k}\Omega) = 0.59 \text{ ms}$
- $t_{\text{low}} = 0.24 \times 52 \mu F \times (17 \text{k}\Omega) = 0.21 \text{ ms}$

The shape of V_B is essentially the same as that of the regular 555 astable configuration, rising and falling exponentially between the two limits - except that the upper limit is V_R instead of $2/3V_{CC}$. Meanwhile V_A rises exponentially from somewhat above $1/3V_{CC}$ to $2/3V_{CC}$, and then drops immediately to zero for the duration of the discharge half-cycle since it is connected directly to the discharge pin (pin 7).