The op-amp is ideal, with $V_{CC} = 10$ V and $V_{EE} = -10$ V. The diode forward voltage, $V_D = 0.7$ V.

![Wien bridge sine-wave oscillator circuit diagram]

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

This is a Wien bridge sine-wave oscillator. It oscillates because $G = 1 + \frac{97 \text{k} \Omega}{28 \text{k} \Omega} = 4.46 > 3$.

- What is the frequency of oscillation.

 $\omega = (RC)^{-1} = (22 \text{k} \Omega \times 21 \text{nF})^{-1} = 2164.5 \text{ rad/s}$

 $f = \frac{1}{2\pi} \omega = 344.5 \text{ Hz}$

- Sketch V_o when the oscillation amplitude has stabilized.

 The oscillation will be roughly sine shaped at $f = 344.5 \text{ Hz}$

- Indicate the approximate voltage of oscillation on the sketch.

 amplitude stabilized at ± 0.7 V.
The op-amp is ideal, with $V_{CC} = 2$ V and $V_{EE} = -2$ V.

Initial conditions are: $V_- = 0$ and $V_o = +V_{CC}$.

Sketch as a function of time: 1) V_-, 2) V_+, 3) V_o

- V_o will switch between ± 2 V
- V_+ will switch between ± 2 V $\frac{44 \, \text{k}\Omega}{44 \, \text{k}\Omega + 22 \, \text{k}\Omega} = 1.33$ V
- V_+ will exponentially rise between ± 1.33 V.

Timing will be symmetric between +ve and -ve pulses.

$$(V_f - V_\infty) = (V_i - V_\infty)e^{-t/\tau},$$

were $\tau = RC = 21 \, \text{k}\Omega \times 22 \, \text{nF} = 0.462$ ms

For the -ve transition, $V_i = 1.33$ V, $V_f = -1.33$ V, and $V_\infty = -2$ V.

$$t = \tau \ln \left(\frac{V_f - V_\infty}{V_i - V_\infty} \right) = (0.462 \, \text{ms}) \ln \left(\frac{1.33 - (-2)}{-1.33 - (-2)} \right) = 0.74$ \text{ms}$$
Initial conditions are that the charge on the capacitor is zero. $V_{CC} = 9\,\text{V}$.

- Sketch V_o, V_A and V_B.
- What is the length of the $V_o = \text{high}$ and $V_o = \text{low}$ outputs?

This configuration is similar, but not the same as the configuration discussed in class. Normally V_+ of the upper comparator is connected to V_B. This means that the upper transitions will not happen at $V_B = \frac{2}{3}V_{CC}$, but instead when $V_A = \frac{2}{3}V_{CC}$. At this time, we calculate

\[
i = (V_{CC} - \frac{2}{3}V_{CC})/33\,\text{k}\Omega = (9\,\text{V} - 6\,\text{V})/33\,\text{k}\Omega = 3\,\text{V}/33\,\text{k}\Omega = 90.91\,\mu\text{A}.
\]

Using i, we calculate $V_B = V_A - i(20\,\text{k}\Omega) = 4.18\,\text{V}$.

Another way to see this is to think about Capacitor C charging until $V_A = 2/3V_{CC}$ (RESET) and discharging until $V_B = 1/3V_{CC}$ (SET). In the usual 555 astable configuration, the trigger and threshold pins (pins 2 and 6) are both connected to the top of C, so $V_A = V_B$, however in the above circuit V_A and V_B are related by

\[
V_A = V_B + (V_{CC} - V_B)\frac{R_B}{R_A + R_B}
\]

(voltage divider). Setting $V_A = 2/3V_{CC}$ and rearranging, RESET occurs when V_B reaches voltage V_R given by

\[
V_R = \left(\frac{2}{3} - \frac{20\,\text{k}\Omega}{33\,\text{k}\Omega + 20\,\text{k}\Omega}\right)\left(\frac{33\,\text{k}\Omega + 20\,\text{k}\Omega}{33\,\text{k}\Omega}\right)V_{CC}
\]

\[
V_R = \left(\frac{2}{3} - \frac{20\,\text{k}\Omega}{33\,\text{k}\Omega + 20\,\text{k}\Omega}\right)9\,\text{V} = 4.18\,\text{V}
\]

The durations of the charge and discharge half-cycles are then given by the usual formula

\[
t = RC\ln\left(\frac{V_{\infty} - V_i}{V_{\infty} - V_f}\right) = (0.22)RC
\]
with $V_i = V_{CC}/3$, $V_f = V_R$, $V_\infty = V_{CC}$ and $R = R_A + R_B$ for the charge half-cycle and $V_i = V_R$, $V_f = V_{CC}/3$, $V_\infty = 0$ and $R = R_B$ for the discharge half-cycle. $V_o = V_{CC}$ during the charge period and $V_o = 0 \text{ V}$ during the discharge period. Thus:

- $t_{\text{high}} = 0.22 \times 59 \, \mu\text{F} \times (33 \, \text{k}\Omega + 20 \, \text{k}\Omega) = 0.69 \, \text{ms}$
- $t_{\text{low}} = 0.22 \times 59 \, \mu\text{F} \times (20 \, \text{k}\Omega) = 0.26 \, \text{ms}$

The shape of V_B is essentially the same as that of the regular 555 astable configuration, rising and falling exponentially between the two limits - except that the upper limit is V_R instead of $2/3V_{CC}$. Meanwhile V_A rises exponentially from somewhat above $1/3V_{CC}$ to $2/3V_{CC}$, and then drops immediately to zero for the duration of the discharge half-cycle since it is connected directly to the discharge pin (pin 7).