The op-amp is ideal, with $V_{CC} = 10 \, \text{V}$ and $V_{EE} = -10 \, \text{V}$. The diode forward voltage, $V_D = 0.7 \, \text{V}$.

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

This is a Wien bridge sine-wave oscillator. It oscillates because
\[
G = 1 + \frac{45 \, \text{k} \Omega}{22 \, \text{k} \Omega} = 3.05 > 3.
\]

- What is the frequency of oscillation.
 \[
 \omega = (RC)^{-1} = (28 \, \text{k} \Omega \times 34 \, \text{nF})^{-1} = 1050.4 \, \text{rad/s}
 \]
 \[
 f = \frac{1}{2\pi} \omega = 167.2 \, \text{Hz}
 \]
- Sketch V_o when the oscillation amplitude has stabilized.
 The oscillation will be roughly sine shaped at $f = 167.2 \, \text{Hz}$
- Indicate the approximate voltage of oscillation on the sketch.
 amplitude stabilized at $\pm 0.7 \, \text{V}$.
The op-amp is ideal, with $V_{CC} = 2\, \text{V}$ and $V_{EE} = -2\, \text{V}$.

Initial conditions are: $V_- = 0$ and $V_o = +V_{CC}$.

Sketch as a function of time: 1) V_-, 2) V_+, 3) V_o

- V_o will switch between $\pm 2\, \text{V}$
- V_+ will switch between $\pm 2\, \text{V}$ \(\frac{75\, \text{k}\Omega}{75\, \text{k}\Omega + 38\, \text{k}\Omega} = 1.33\, \text{V}\)
- V_+ will exponentially rise between $\pm 1.33\, \text{V}$.

Timing will be symmetric between +ve and -ve pulses.

\[
(V_f - V_\infty) = (V_i - V_\infty)e^{-t/\tau},
\]
were $\tau = RC = 34\, \text{k}\Omega \times 28\, \text{nF} = 0.952\, \text{ms}$

For the -ve transition, $V_i = 1.33\, \text{V}$, $V_f = -1.33\, \text{V}$, an $V_\infty = -2\, \text{V}$.

\[
t = \tau \ln \left(\frac{V_f - V_\infty}{V_i - V_\infty} \right) = (0.952\, \text{ms}) \ln \left(\frac{1.33 - (-2)}{-1.33 - (-2)} \right) = 1.53\, \text{ms}
\]
Initial conditions are that the charge on the capacitor is zero. $V_{CC} = 9\, \text{V}$.

- Sketch V_o, V_A and V_B.
- What is the length of the $V_o = \text{high}$ and $V_o = \text{low}$ outputs?

This configuration is similar, but not the same as the configuration discussed in class. Normally V_+ of the upper comparator is connected to V_B. This means that the upper transitions will not happen at $V_B = \frac{2}{3}V_{CC}$, but instead when $V_A = \frac{2}{3}V_{CC}$. At this time, we calculate

$$i = (V_{CC} - \frac{2}{3}V_{CC})/42\, \text{k}\Omega = (9\, \text{V} - 6\, \text{V})/42\, \text{k}\Omega = 3\, \text{V}/42\, \text{k}\Omega = 71.43\, \mu\text{A}.$$

Using i, we calculate $V_B = V_A - i(14\, \text{k}\Omega) = 5.00\, \text{V}.$

Another way to see this is to think about Capacitor C charging until $V_A = 2/3V_{CC}$ (RESET) and discharging until $V_B = 1/3V_{CC}$ (SET). In the usual 555 astable configuration, the trigger and threshold pins (pins 2 and 6) are both connected to the top of C, so $V_A = V_B$, however in the above circuit V_A and V_B are related by

$$V_A = V_B + (V_{CC} - V_B)\frac{R_B}{R_A + R_B}$$

(voltage divider). Setting $V_A = 2/3V_{CC}$ and rearranging, RESET occurs when V_B reaches voltage V_R given by

$$V_R = \left(\frac{2}{3} - \frac{R_B}{R_A + R_B}\right)\left(\frac{R_A + R_B}{R_A}\right)V_{CC}$$

$$V_R = \left(\frac{2}{3} - \frac{14\, \text{k}\Omega}{42\, \text{k}\Omega + 14\, \text{k}\Omega}\right)\left(\frac{42\, \text{k}\Omega + 14\, \text{k}\Omega}{42\, \text{k}\Omega}\right)9\, \text{V} = 5.00\, \text{V}.$$

The durations of the charge and discharge half-cycles are then given by the usual formula

$$t = RC\ln\left(\frac{V_\infty - V_i}{V_\infty - V_f}\right) = (0.41)RC.$$
with \(V_i = V_{CC}/3 \), \(V_f = V_R \), \(V_\infty = V_{CC} \) and \(R = R_A + R_B \) for the charge half-cycle and \(V_i = V_R \), \(V_f = V_{CC}/3 \), \(V_\infty = 0 \) and \(R = R_B \) for the discharge half-cycle. \(V_o = V_{CC} \) during the charge period and \(V_o = 0 \) V during the discharge period. Thus:

- \(t_{\text{high}} = 0.41 \times 32 \mu F \times (42 \text{k}\Omega + 14 \text{k}\Omega) = 0.73 \text{ ms} \)
- \(t_{\text{low}} = 0.41 \times 32 \mu F \times (14 \text{k}\Omega) = 0.18 \text{ ms} \)

The shape of \(V_B \) is essentially the same as that of the regular 555 astable configuration, rising and falling exponentially between the two limits - except that the upper limit is \(V_R \) instead of \(2/3V_{CC} \). Meanwhile \(V_A \) rises exponentially from somewhat above \(1/3V_{CC} \) to \(2/3V_{CC} \), and then drops immediately to zero for the duration of the discharge half-cycle since it is connected directly to the discharge pin (pin 7).