The op-amp is ideal, with $V_{CC} = 10\, V$ and $V_{EE} = -10\, V$. The diode forward voltage, $V_D = 0.7\, V$.

- What is the frequency of oscillation.
- Sketch V_o when the oscillation amplitude has stabilized.
- Indicate the approximate voltage of oscillation on the sketch.

This is a Wien bridge sine-wave oscillator. It oscillates because

$G = 1 + \frac{96\, k\Omega}{20\, k\Omega} = 5.80 > 3$.

- What is the frequency of oscillation.

$\omega = (RC)^{-1} = (24\, k\Omega \times 25\, nF)^{-1} = 1666.7\, \text{rad/s}$

$f = \frac{1}{2\pi}\omega = 265.3\, \text{Hz}$

- Sketch V_o when the oscillation amplitude has stabilized.

The oscillation will be roughly sine shaped at $f = 265.3\, \text{Hz}$

- Indicate the approximate voltage of oscillation on the sketch.

amplitude stabilized at $\pm 0.7\, V$.
The op-amp is ideal, with \(V_{CC} = 2 \) V and \(V_{EE} = -2 \) V.

\[
\begin{align*}
\text{Initial conditions are: } & V_- = 0 \text{ and } V_o = +V_{CC}. \\
\text{Sketch as a function of time: } & 1) V_-, 2) V_+, 3) V_o
\end{align*}
\]

- \(V_o \) will switch between \(\pm 2 \) V
- \(V_+ \) will switch between \(\pm 2 \) V \(\frac{62 \text{ k}\Omega}{62 \text{ k}\Omega + 23 \text{ k}\Omega} = 1.46 \) V
- \(V_+ \) will exponentially rise between \(\pm 1.46 \) V.

Timing will be symmetric between +ve and -ve pulses.

\[
(V_f - V_\infty) = (V_i - V_\infty)e^{-t/\tau}
\]

were \(\tau = RC = 25 \text{ k}\Omega \times 24 \text{ nF} = 0.600 \) ms

For the -ve transition, \(V_i = 1.46 \) V, \(V_f = -1.46 \) V, an \(V_\infty = -2 \) V.

\[
t = \tau \ln \left(\frac{V_f - V_\infty}{V_i - V_\infty} \right) = (0.600 \text{ ms}) \ln \left(\frac{1.46 - (-2)}{-1.46 - (-2)} \right) = 1.11 \text{ ms}
\]
Initial conditions are that the charge on the capacitor is zero. $V_{CC} = 9$ V.

- Sketch V_o, V_A and V_B.
- What is the length of the V_o = high and V_o = low outputs?

This configuration is similar, but not the same as the configuration discussed in class. Normally V_+ of the upper comparator is connected to V_B. This means that the upper transitions will not happen at $V_B = \frac{2}{3}V_{CC}$, but instead when $V_A = \frac{2}{3}V_{CC}$. At this time, we calculate

$$i = (V_{CC} - \frac{2}{3}V_{CC})/36 \text{k}\Omega = (9 V - 6 V)/36 \text{k}\Omega = 3 V/36 \text{k}\Omega = 83.33 \mu A.$$

Using i, we calculate $V_B = V_A - i(12 \text{k}\Omega) = 5.00$ V.

Another way to see this is to think about Capacitor C charging until $V_A = 2/3V_{CC}$ (RESET) and discharging until $V_B = 1/3V_{CC}$ (SET). In the usual 555 astable configuration, the trigger and threshold pins (pins 2 and 6) are both connected to the top of C, so $V_A = V_B$, however in the above circuit V_A and V_B are related by

$$V_A = V_B + (V_{CC} - V_B) \frac{R_B}{R_A + R_B}$$

(voltage divider). Setting $V_A = 2/3V_{CC}$ and rearranging, RESET occurs when V_B reaches voltage V_R given by

$$V_R = \left(\frac{2}{3} - \frac{R_B}{R_A + R_B}\right) \left(\frac{R_A + R_B}{R_A}\right) V_{CC}$$

$$V_R = \left(\frac{2}{3} - \frac{12 \text{k}\Omega}{36 \text{k}\Omega + 12 \text{k}\Omega}\right) \left(\frac{36 \text{k}\Omega + 12 \text{k}\Omega}{36 \text{k}\Omega}\right) 9 \text{V} = 5.00 \text{V}$$

The durations of the charge and discharge half-cycles are then given by the usual formula

$$t = RC \ln \left(\frac{V_\infty - V_i}{V_\infty - V_f}\right) = (0.41)RC$$
with $V_i = V_{CC}/3$, $V_f = V_R$, $V_{\infty} = V_{CC}$ and $R = R_A + R_B$ for the charge half-cycle and $V_i = V_R$, $V_f = V_{CC}/3$, $V_{\infty} = 0$ and $R = R_B$ for the discharge half-cycle. $V_o = V_{CC}$ during the charge period and $V_o = 0$ V during the discharge period. Thus:

- $t_{\text{high}} = 0.41 \times 58 \mu F \times (36 \, k\Omega + 12 \, k\Omega) = 1.14 \, ms$
- $t_{\text{low}} = 0.41 \times 58 \mu F \times (12 \, k\Omega) = 0.29 \, ms$

The shape of V_B is essentially the same as that of the regular 555 astable configuration, rising and falling exponentially between the two limits - except that the upper limit is V_R instead of $2/3V_{CC}$. Meanwhile V_A rises exponentially from somewhat above $1/3V_{CC}$ to $2/3V_{CC}$, and then drops immediately to zero for the duration of the discharge half-cycle since it is connected directly to the discharge pin (pin 7).