This is a non-inverting amplifier with a gain of \(G = 1 + \frac{314}{1.67} = 189.0 \).

With such a large gain, it will saturate when \(V_i = \pm 10 \text{ V} / G = \pm 0.053 \text{ V} \).

Times when \(|V_i| < 0.053 \), are

\[
T_1 = \pm \frac{0.1 - 0.053}{5 \text{ V/100 ms}} = \pm 0.940 \text{ ms}.
\]

\[
T_2 = \pm \frac{0.1 + 0.053}{5 \text{ V/100 ms}} = \pm 3.060 \text{ ms}.
\]

- Sketch \(V_o \).
- At what times does \(V_o \) reach \(\pm 10 \text{ V} \)?
- Does this circuit suffer from multiple transitions?

(Note: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)
• Sketch \(V_o \).

• At what times does \(V_o \) reach \(\pm 10 \) V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

Thresholds at \(\pm \frac{1.05 \text{k}\Omega}{543 + 1.05 \text{k}\Omega} \times 10 \text{V} = \pm 0.019 \text{V} \).

Conditions:
1) If \(V_i < V_+ \implies V_o = +10 \text{V} \) and \(V_+ = +0.019 \text{V} \).
2) If \(V_i > V_+ \implies V_o = -10 \text{V} \) and \(V_+ = -0.019 \text{V} \).

• Sketch \(V_o \).

 1) Initially, \(V_o = +10 \) and \(V_+ = +0.019 \text{V} \)

 2) when \(V_i \) crosses +0.019 V, then \(V_o = -10 \) and \(V_+ = -0.019 \text{V} \)

 3) when \(V_i \) crosses -0.019 V, then \(V_o = +10 \) and \(V_+ = +0.019 \text{V} \)

 4) when \(V_i \) crosses +0.019 V, then \(V_o = -10 \) and \(V_+ = -0.019 \text{V} \)

• At what times does \(V_o \) reach \(\pm 10 \) V?

 Transitions at \(\pm \frac{0.1 - 0.019}{5 \text{V}/100 \text{ms}} = \pm 1.62 \text{ms} \).

 1) Beginning until \(-1.62 \text{ms} \implies V_o = +10 \text{V} \).

 2) \(-1.62 \text{ms} \) until \(0 \text{ms} \implies V_o = -10 \text{V} \).

 3) \(0 \text{ms} \) until \(+2.38 \text{ms} \implies V_o = +10 \text{V} \).

 4) \(+2.38 \text{ms} \) until end \(\implies V_o = -10 \text{V} \).

• Does this circuit suffer from multiple transitions?
 Yes
• Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)

• At what times does V_o reach ± 10 V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

This is a low pass filter with a gain of $G = -\frac{312 \, \text{k}\Omega}{17.2 \, \text{k}\Omega} = -18.14$.
With such a large gain, it will saturate when $V_i = \pm 10$ V/$G = \pm 0.551$ V.
The time constant is $\tau = 312 \, \text{k}\Omega \times 502 \, \text{nF} = 156.6$ ms.

• At what times does V_o reach ± 10 V?
 Transitions at $\pm 0.1 + 0.551 = \pm 13.0$ ms.
 Thus: 1) Beginning until -13.0 ms $\implies V_o = +10$ V.
 2) $+13.0$ ms until end $\implies V_o = -10$ V.

• Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)
 Beginning until -13.0 ms $\implies V_o = +10$ V. Then, from $+13.0$ ms until -13.0 ms the will go from $+10$ to -10 V, following the flipped the blue line (with gain) but with a slight delay. However, it
will only deviate slightly at the zigzag. The time constant τ is longer than the gap in the zigzag. Finally, from $+13.0$ ms until end $\implies V_o = -10$ V.

• Does this circuit suffer from multiple transitions?
 [No]

Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant $RC = 156.6$ ms. We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” V_i briefly changes sign). assuming the input transitions are short compared to RC, then V_o will NOT suffer from multiple transitions.