This is a non-inverting amplifier with a gain of $G = 1 + \frac{373}{1.05} = 356.2$.
With such a large gain, it will saturate when $V_i = \pm 10 V / G = \pm 0.028 V$.

Times when $|V_i| < 0.028$, V_o are

$T_1 = \pm \frac{0.1-0.028}{5 V/100\text{ms}} = \pm 1.440 \text{ ms}$.
$T_2 = \pm \frac{0.1+0.028}{5 V/100\text{ms}} = \pm 2.560 \text{ ms}$.

- Sketch V_o.
- At what times does V_o reach $\pm 10 V$?
- Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as $5 V/100\text{ms}$. Op amps are ideal)
- Sketch V_o.

- At what times does V_o reach $\pm 10 \text{ V}$?

- Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

Thresholds at $\pm \frac{1.24 \text{k}\Omega}{440 + 1.24 \text{k}\Omega} \times 10 \text{ V} = \pm 0.028 \text{ V}$.

Conditions:
1) If $V_i < V_+ \implies V_o = +10 \text{ V}$ and $V_+ = +0.028 \text{ V}$.
2) If $V_i > V_+ \implies V_o = -10 \text{ V}$ and $V_+ = -0.028 \text{ V}$.

- Sketch V_o.
 1) Initially, $V_o = +10$ and $V_+ = +0.028 \text{ V}$
 2) when V_i crosses $+0.028 \text{ V}$, then $V_o = -10$ and $V_+ = -0.028 \text{ V}$
 3) when V_i crosses -0.028 V, then $V_o = +10$ and $V_+ = +0.028 \text{ V}$
 4) when V_i crosses $+0.028 \text{ V}$, then $V_o = -10$ and $V_+ = -0.028 \text{ V}$

- At what times does V_o reach $\pm 10 \text{ V}$?
 Transitions at $\pm \frac{0.1-0.028}{5\text{ V}/100\text{ ms}} = \pm 1.44 \text{ ms}$.
 1) Beginning until $-1.44 \text{ ms} \implies V_o = +10 \text{ V}$.
 2) -1.44 ms until $0 \text{ ms} \implies V_o = -10 \text{ V}$.
 3) 0 ms until $+2.56 \text{ ms} \implies V_o = +10 \text{ V}$.
 4) $+2.56 \text{ ms}$ until end $\implies V_o = -10 \text{ V}$.

- Does this circuit suffer from multiple transitions?
 Yes
This is a low pass filter with a gain of \(G = -\frac{586\, \text{k}\Omega}{18.4\, \text{k}\Omega} = -31.85. \)
With such a large gain, it will saturate when \(V_i = \pm 10 \, \text{V} / G = \pm 0.314 \, \text{V}. \)
The time constant is \(\tau = 586 \, \text{k}\Omega \times 316 \, \text{nF} = 185.2 \, \text{ms}. \)

- At what times does \(V_o \) reach \(\pm 10 \, \text{V} \)?
 Transitions at \(\pm \frac{0.1 + 0.314}{5 \, \text{V} / 100 \, \text{ms}} = \pm 8.3 \, \text{ms}. \)
 Thus: 1) Beginning until \(-8.3 \, \text{ms} \implies V_o = +10 \, \text{V}. \)
 2) \(+8.3 \, \text{ms} \) until end \(\implies V_o = -10 \, \text{V}. \)

- Sketch \(V_o \) (this is difficult because of the exponential – indicate the main features of the curve)
 \(V_i \) brief changes sign. assuming the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” \(V_i \) briefly changes sign). assuming the input transitions are short compared to \(RC \), then \(V_o \) will NOT suffer from multiple transitions.