• Sketch V_o.

• At what times does V_o reach ± 10 V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

This is a non-inverting amplifier with a gain of $G = 1 + \frac{326}{1.47} = 222.8$. With such a large gain, it will saturate when $V_i = \pm 10$ V$/G = \pm \pm 0.045$ V.

Times when $|V_i| < 0.045$, V, are

$T_1 = \pm \frac{0.1-0.045}{5 \text{V/100ms}} = \pm 1.100$ ms.

$T_2 = \pm \frac{0.1+0.045}{5 \text{V/100ms}} = \pm 2.900$ ms.

• Sketch V_o.
 1) From start to $−2.900$ ms, $V_o = −10$ V
 2) From $−2.900$ ms to $−1.100$ ms, $V_o =$ transitions from $−10$ V to $+10$ V
 3) From $−1.100$ ms to 0 ms, $V_o = +10$ V
 4) From 0 ms to $+1.100$ ms, $V_o = −10$ V
 5) From $+1.100$ ms to $+2.900$ ms, $V_o =$ transitions from $−10$ V to $+10$ V
 6) From $+2.900$ ms to end, $V_o = +10$ V

• At what times does V_o reach ± 10 V?
 1) From start to $−2.900$ ms, $V_o = −10$ V
 3) From $−1.100$ ms to 0 ms, $V_o = +10$ V
 4) From 0 ms to $+1.100$ ms, $V_o = −10$ V
 6) From $+2.900$ ms to end, $V_o = +10$ V

• Does this circuit suffer from multiple transitions?

Yes
• Sketch V_o.

• At what times does V_o reach ±10 V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

Thresholds at $\pm \frac{1.09 \text{k}\Omega}{305+1.09 \text{k}\Omega} \times 10 \text{ V} = \pm 0.036 \text{ V}.$

Conditions:
1) If $V_i < V_+ \implies V_o = +10 \text{ V}$ and $V_+ = +0.036 \text{ V}$.
2) If $V_i > V_+ \implies V_o = -10 \text{ V}$ and $V_+ = -0.036 \text{ V}$.

• Sketch V_o.
 1) Initially, $V_o = +10$ and $V_+ = +0.036 \text{ V}$
 2) when V_i crosses +0.036 V, then $V_o = -10$ and $V_+ = -0.036 \text{ V}$
 3) when V_i crosses -0.036 V, then $V_o = +10$ and $V_+ = +0.036 \text{ V}$
 4) when V_i crosses +0.036 V, then $V_o = -10$ and $V_+ = -0.036 \text{ V}$

• At what times does V_o reach ±10 V?
 Transitions at $\pm \frac{0.1-0.036}{5 \text{ V}/100 \text{ ms}} = \pm 1.28 \text{ ms}$.
 1) Beginning until -1.28 ms $\implies V_o = +10 \text{ V}$.
 2) -1.28 ms until 0 ms $\implies V_o = -10 \text{ V}$.
 3) 0 ms until +2.72 ms $\implies V_o = +10 \text{ V}$.
 4) +2.72 ms until end $\implies V_o = -10 \text{ V}$.

• Does this circuit suffer from multiple transitions? Yes
This is a low pass filter with a gain of $G = \frac{-400 \text{k}\Omega}{14.9 \text{k}\Omega} = -26.85$.
With such a large gain, it will saturate when $V_i = \pm 10 \text{ V} / G = \pm 0.372 \text{ V}$.
The time constant is $\tau = 400 \text{k}\Omega \times 442 \text{nF} = 176.8 \text{ ms}$.

- At what times does V_o reach $\pm 10 \text{ V}$?
 Transitions at $\pm \frac{0.1 + 0.372}{5 \text{ V}/100 \text{ ms}} = \pm 9.4 \text{ ms}$.
 Thus: 1) Beginning until $-9.4 \text{ ms} \implies V_o = +10 \text{ V}$.
 2) $+9.4 \text{ ms}$ until end $\implies V_o = -10 \text{ V}$.

- Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)
 Begining until $-9.4 \text{ ms} \implies V_o = +10 \text{ V}$. Then, from $+9.4 \text{ ms}$ until -9.4 ms the will go from $+10$ to -10 V, following the flipped the blue line (with gain) but with a slight delay. However, it will only deviate slightly at the zigzag. The time constant τ is longer than the gap in the zigzag. Finally, from $+9.4 \text{ ms}$ until end $\implies V_o = -10 \text{ V}$.

- Does this circuit suffer from multiple transitions?
 [No]

Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant $RC = 176.8 \text{ ms}$. We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” V_i briefly changes sign). assuming the input transitions are short compared to RC, then V_o will NOT suffer from multiple transitions.