This is a non-inverting amplifier with a gain of $G = 1 + \frac{408}{194} = 211.3$. With such a large gain, it will saturate when $V_i = \pm 10 V / G = \pm 0.047 V$.

Times when $|V_i| < 0.047 V$, are

$T_1 = \pm \frac{0.1 - 0.047}{0.05} = \pm 1.060$ ms.
$T_2 = \pm \frac{0.1 + 0.047}{0.05} = \pm 2.940$ ms.

Sketch V_o.

1) From start to -2.940 ms, $V_o = -10 V$
2) From -2.940 ms to -1.060 ms, $V_o = \text{transitions from } -10 V \text{ to } +10 V$
3) From -1.060 ms to 0 ms, $V_o = +10 V$
4) From 0 ms to $+1.060$ ms, $V_o = -10 V$
5) From $+1.060$ ms to $+2.940$ ms, $V_o = \text{transitions from } -10 V \text{ to } +10 V$
6) From $+2.940$ ms to end, $V_o = +10 V$

At what times does V_o reach $\pm 10 V$?

1) From start to -2.940 ms, $V_o = -10 V$
3) From -1.060 ms to 0 ms, $V_o = +10 V$
4) From 0 ms to $+1.060$ ms, $V_o = -10 V$
6) From $+2.940$ ms to end, $V_o = +10 V$

Does this circuit suffer from multiple transitions?

Yes
Question: B

- Sketch V_0.
- At what times does V_0 reach $\pm 10\, \text{V}$?
- Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as $5\, \text{V}/100\, \text{ms}$. Op amps are ideal)

Thresholds at $\pm \frac{1.36\, \text{k}\Omega}{546+1.36\, \text{k}\Omega} \times 10\, \text{V} = \pm 0.025\, \text{V}$.

Conditions:
1) If $V_i < V_+ \implies V_o = +10\, \text{V}$ and $V_+ = +0.025\, \text{V}$.
2) If $V_i > V_+ \implies V_o = -10\, \text{V}$ and $V_+ = -0.025\, \text{V}$.

- Sketch V_o.
 1) Initially, $V_o = +10$ and $V_+ = +0.025\, \text{V}$
 2) when V_i crosses $+0.025\, \text{V}$, then $V_o = -10$ and $V_+ = -0.025\, \text{V}$
 3) when V_i crosses $-0.025\, \text{V}$, then $V_o = +10$ and $V_+ = +0.025\, \text{V}$
 4) when V_i crosses $+0.025\, \text{V}$, then $V_o = -10$ and $V_+ = -0.025\, \text{V}$

- At what times does V_0 reach $\pm 10\, \text{V}$?
 Transitions at $\pm \frac{0.1-0.025}{5\, \text{V}/100\, \text{ms}} = \pm 1.50\, \text{ms}$.
 1) Beginning until $-1.50\, \text{ms} \implies V_o = +10\, \text{V}$.
 2) $-1.50\, \text{ms}$ until $0\, \text{ms} \implies V_o = -10\, \text{V}$.
 3) $0\, \text{ms}$ until $+2.50\, \text{ms} \implies V_o = +10\, \text{V}$.
 4) $+2.50\, \text{ms}$ until end $\implies V_o = -10\, \text{V}$.

- Does this circuit suffer from multiple transitions?
 Yes
• Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)

• At what times does V_o reach ± 10 V?

• Does this circuit suffer from multiple transitions?

(Note: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

This is a low pass filter with a gain of $G = -\frac{517\, \text{k}\Omega}{16.6\, \text{k}\Omega} = -31.14$.

With such a large gain, it will saturate when $V_i = \pm 10$ V / $G = \pm 0.321$ V.

The time constant is $\tau = 517\, \text{k}\Omega \times 582\, \text{nF} = 300.9$ ms.

• At what times does V_o reach ± 10 V?

 Transitions at $\pm \frac{0.1 + 0.321}{5\, \text{V}/100\, \text{ms}} = \pm 8.4$ ms.

 Thus: 1) Begining until -8.4 ms $\implies V_o = +10$ V.

 2) $+8.4$ ms until end $\implies V_o = -10$ V.

• Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)

 Begining until -8.4 ms $\implies V_o = +10$ V. Then, from $+8.4$ ms until -8.4 ms the will go from $+10$ to -10 V, following the flipped the blue line (with gain) but with a slight delay. However, it will only deviate slightly at the zigzag. The time constant τ is longer than the gap in the zigzag. Finally, from $+8.4$ ms until end $\implies V_o = -10$ V.

• Does this circuit suffer from multiple transitions?

[No]

Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant $RC = 300.9$ ms. We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” V_i briefly changes sign). assuming the input transitions are short compared to RC, then V_o will NOT suffer from multiple transitions.