This is a non-inverting amplifier with a gain of $G = 1 + \frac{579}{1.67} = 347.7$.

With such a large gain, it will saturate when $V_i = \pm 10 V / G = \pm 0.029 V$.

Times when $|V_i| < 0.029$, V, are

$T_1 = \pm \frac{0.1 - 0.029}{5 V/100 ms} = \pm 1.420$ ms.
$T_2 = \pm \frac{0.1 + 0.029}{5 V/100 ms} = \pm 2.580$ ms.

Sketch V_o.

1) From start to -2.580 ms, $V_o = -10$ V
2) From -2.580 ms to -1.420 ms, V_o = transitions from -10 V to $+10$ V
3) From -1.420 ms to 0 ms, $V_o = +10$ V
4) From 0 ms to $+1.420$ ms, $V_o = -10$ V
5) From $+1.420$ ms to $+2.580$ ms, V_o = transitions from -10 V to $+10$ V
6) From $+2.580$ ms to end, $V_o = +10$ V

At what times does V_o reach ± 10 V?

1) From start to -2.580 ms, $V_o = -10$ V
3) From -1.420 ms to 0 ms, $V_o = +10$ V
4) From 0 ms to $+1.420$ ms, $V_o = -10$ V
6) From $+2.580$ ms to end, $V_o = +10$ V

Yes
• Sketch V_o.

• At what times does V_o reach ±10 V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

Thresholds at $\pm \frac{1.93\,\text{k}\Omega}{324+1.93\,\text{k}\Omega} \times 10\,\text{V} = \pm 0.059\,\text{V}$.

Conditions:
1) If $V_i < V_+ \implies V_o = +10\,\text{V}$ and $V_+ = +0.059\,\text{V}$.
2) If $V_i > V_+ \implies V_o = -10\,\text{V}$ and $V_+ = -0.059\,\text{V}$.

• Sketch V_o.
 1) Initially, $V_o = +10$ and $V_+ = +0.059\,\text{V}$
 2) when V_i crosses +0.059 V, then $V_o = -10$ and $V_+ = -0.059\,\text{V}$
 3) when V_i crosses −0.059 V, then $V_o = +10$ and $V_+ = +0.059\,\text{V}$
 4) when V_i crosses +0.059 V, then $V_o = -10$ and $V_+ = -0.059\,\text{V}$

• At what times does V_o reach ±10 V?
 Transitions at $\pm \frac{0.1-0.059}{5\,\text{V}/100\,\text{ms}} = \pm 0.82\,\text{ms}$.
 1) Beginning until $-0.82\,\text{ms} \implies V_o = +10\,\text{V}$.
 2) $-0.82\,\text{ms}$ until $0\,\text{ms} \implies V_o = -10\,\text{V}$.
 3) $0\,\text{ms}$ until $+3.18\,\text{ms} \implies V_o = +10\,\text{V}$.
 4) $+3.18\,\text{ms}$ until end $\implies V_o = -10\,\text{V}$.

• Does this circuit suffer from multiple transitions?
 Yes
This is a low pass filter with a gain of \(G = \frac{-557 \, \text{k}\Omega}{14.3 \, \text{k}\Omega} = -38.95 \).

With such a large gain, it will saturate when \(V_i = \pm 10 \, \text{V} / G = \pm 0.257 \, \text{V} \).

The time constant is \(\tau = 557 \, \text{k}\Omega \times 500 \, \text{nF} = 278.5 \, \text{ms} \).

- At what times does \(V_o \) reach \(\pm 10 \, \text{V} \)?

 Transitions at \(\pm \frac{0.1 + 0.257}{5 \, \text{V} / 100 \, \text{ms}} = \pm 7.1 \, \text{ms} \).

 Thus: 1) Beginning until \(-7.1 \, \text{ms} \implies V_o = +10 \, \text{V} \).

 2) \(+7.1 \, \text{ms} \) until end \(\implies V_o = -10 \, \text{V} \).

- Sketch \(V_o \) (this is difficult because of the exponential – indicate the main features of the curve)

 Beginng until \(-7.1 \, \text{ms} \implies V_o = +10 \, \text{V} \). Then, from \(+7.1 \, \text{ms} \) until \(-7.1 \, \text{ms} \) the will go from \(+10 \) to \(-10 \, \text{V} \), following the flipped the blue line (with gain) but with a slight delay. However, it will only deviate slightly at the zigzag. The time constant \(\tau \) is longer than the gap in the zigzag. Finally, from \(+7.1 \, \text{ms} \) until end \(\implies V_o = -10 \, \text{V} \).

- Does this circuit suffer from multiple transitions?

 [No]

 Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant \(RC = 278.5 \, \text{ms} \). We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” \(V_i \) briefly changes sign). Assuming the input transitions are short compared to \(RC \), then \(V_o \) will NOT suffer from multiple transitions.