This is a non-inverting amplifier with a gain of $G = 1 + \frac{416}{147} = 284.0$.
With such a large gain, it will saturate when $V_i = \pm 10 \text{ V}/G = \pm 0.035 \text{ V}$.

Times when $|V_i| < 0.035$, are

$T_1 = \pm \frac{0.1 - 0.035}{5 \text{ V}/100 \text{ ms}} = \pm 1.300 \text{ ms}$.
$T_2 = \pm \frac{0.1 + 0.035}{5 \text{ V}/100 \text{ ms}} = \pm 2.700 \text{ ms}$.

- Sketch V_o.
 1) From start to -2.700 ms, $V_o = -10 \text{ V}$
 2) From -2.700 ms to -1.300 ms, V_o transitions from -10 V to $+10 \text{ V}$
 3) From -1.300 ms to 0 ms, $V_o = +10 \text{ V}$
 4) From 0 ms to $+1.300 \text{ ms}$, $V_o = -10 \text{ V}$
 5) From $+1.300 \text{ ms}$ to $+2.700 \text{ ms}$, V_o transitions from -10 V to $+10 \text{ V}$
 6) From $+2.700 \text{ ms}$ to end, $V_o = +10 \text{ V}$

- At what times does V_o reach $\pm 10 \text{ V}$?
 1) From start to -2.700 ms, $V_o = -10 \text{ V}$
 3) From -1.300 ms to 0 ms, $V_o = +10 \text{ V}$
 4) From 0 ms to $+1.300 \text{ ms}$, $V_o = -10 \text{ V}$
 6) From $+2.700 \text{ ms}$ to end, $V_o = +10 \text{ V}$

- Does this circuit suffer from multiple transitions?
 Yes
• Sketch \(V_o \).

• At what times does \(V_o \) reach \(\pm 10 \) V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

Thresholds at \(\pm \frac{1.39 \, k\Omega}{463 + 1.39 \, k\Omega} \times 10 \, V = \pm 0.030 \, V \).

Conditions:
1) If \(V_i < V_+ \implies V_o = +10 \, V \) and \(V_+ = +0.030 \, V \).
2) If \(V_i > V_+ \implies V_o = -10 \, V \) and \(V_+ = -0.030 \, V \).

• Sketch \(V_o \).
 1) Initially, \(V_o = +10 \, V \) and \(V_+ = +0.030 \, V \)
 2) when \(V_i \) crosses +0.030 V, then \(V_o = -10 \, V \) and \(V_+ = -0.030 \, V \)
 3) when \(V_i \) crosses -0.030 V, then \(V_o = +10 \, V \) and \(V_+ = +0.030 \, V \)
 4) when \(V_i \) crosses +0.030 V, then \(V_o = -10 \, V \) and \(V_+ = -0.030 \, V \)

• At what times does \(V_o \) reach \(\pm 10 \) V?
 Transitions at \(\pm \frac{0.1 - 0.030}{5 \, V/100 \, ms} = \pm 1.40 \, ms \).
 1) Beginning until \(-1.40 \, ms \implies V_o = +10 \, V \).
 2) \(-1.40 \, ms \) until 0 ms \(\implies V_o = -10 \, V \).
 3) 0 ms until +2.60 ms \(\implies V_o = +10 \, V \).
 4) +2.60 ms until end \(\implies V_o = -10 \, V \).

• Does this circuit suffer from multiple transitions?
 Yes
- Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)
- At what times does V_o reach ± 10 V?
- Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

This is a low pass filter with a gain of $G = \frac{-430 \text{k}\Omega}{19.6 \text{k}\Omega} = -21.94$.

With such a large gain, it will saturate when $V_i = \pm 10$ V $/ G = \pm 0.456$ V.

The time constant is $\tau = 430 \text{k}\Omega \times 440 \text{nF} = 189.2$ ms.

- At what times does V_o reach ± 10 V?
 Transitions at $\pm \frac{0.1 + 0.456}{5 \text{V}/100 \text{ms}} = \pm 11.1$ ms.
 Thus: 1) Beginning until -11.1 ms $\iff V_o = +10$ V.
 2) $+11.1$ ms until end $\iff V_o = -10$ V.

- Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)

Beginning until -11.1 ms $\iff V_o = +10$ V. Then, from $+11.1$ ms until -11.1 ms the will go from $+10$ to -10 V, following the flipped the blue line (with gain) but with a slight delay. However, it will only deviate slightly at the zigzag. The time constant τ is longer than the gap in the zigzag.

Finally, from $+11.1$ ms until end $\iff V_o = -10$ V.

- Does this circuit suffer from multiple transitions?
 [No]

Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant $RC = 189.2$ ms. We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” V_i briefly changes sign). Assuming the input transitions are short compared to RC, then V_o will NOT suffer from multiple transitions.