This is a non-inverting amplifier with a gain of \(G = 1 + \frac{513}{1.91} = 269.6 \)
With such a large gain, it will saturate when \(V_i = \pm 10 V/G = \pm 0.037 V \).

Times when \(|V_i| < 0.037, V \), are
\[
T_1 = \pm \frac{0.1 - 0.037}{5 \text{V}/100 \text{ms}} = \pm 1.260 \text{ ms}.
\]
\[
T_2 = \pm \frac{0.1 + 0.037}{5 \text{V}/100 \text{ms}} = \pm 2.740 \text{ ms}.
\]

- Sketch \(V_o \).

- At what times does \(V_o \) reach \(\pm 10 V \)?

- Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)
• Sketch V_o.

• At what times does V_o reach ±10 V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

Thresholds at $\pm 1.71 \text{ k}\Omega \times 313 \text{ k}\Omega = \pm 0.054 \text{ V}$.

Conditions:
1) If $V_i < V_+ \implies V_o = +10 \text{ V}$ and $V_+ = +0.054 \text{ V}$.
2) If $V_i > V_+ \implies V_o = -10 \text{ V}$ and $V_+ = -0.054 \text{ V}$.

• Sketch V_o.
 1) Initially, $V_o = +10$ and $V_+ = +0.054 \text{ V}$
 2) when V_i crosses +0.054 V, then $V_o = -10$ and $V_+ = -0.054 \text{ V}$
 3) when V_i crosses -0.054 V, then $V_o = +10$ and $V_+ = +0.054 \text{ V}$
 4) when V_i crosses +0.054 V, then $V_o = -10$ and $V_+ = -0.054 \text{ V}$

• At what times does V_o reach ±10 V?
 Transitions at $\pm 0.1 - 0.054 = \pm 0.92 \text{ ms}$.
 1) Beginning until -0.92 ms $\implies V_o = +10 \text{ V}$.
 2) -0.92 ms until 0 ms $\implies V_o = -10 \text{ V}$.
 3) 0 ms until +3.08 ms $\implies V_o = +10 \text{ V}$.
 4) +3.08 ms until end $\implies V_o = -10 \text{ V}$.

• Does this circuit suffer from multiple transitions?
 Yes
This is a low pass filter with a gain of $G = -\frac{389 \, \text{k}\Omega}{13.3 \, \text{k}\Omega} = -29.25$.
With such a large gain, it will saturate when $V_i = \pm 10 \, \text{V} / G = \pm 0.342 \, \text{V}$.
The time constant is $\tau = 389 \, \text{k}\Omega \times 572 \, \text{nF} = 222.5 \, \text{ms}$.

- At what times does V_o reach $\pm 10 \, \text{V}$?
 Transitions at $\pm \frac{0.1 + 0.342}{5 \, \text{V} / 100 \, \text{ms}} = \pm 8.8 \, \text{ms}$.
 Thus: 1) Beginning until $-8.8 \, \text{ms} \implies V_o = +10 \, \text{V}$.
 2) $+8.8 \, \text{ms}$ until end $\implies V_o = -10 \, \text{V}$.

- Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)
 Begining until $-8.8 \, \text{ms} \implies V_o = +10 \, \text{V}$. Then, from $+8.8 \, \text{ms}$ until $-8.8 \, \text{ms}$ the will go from $+10$ to $-10 \, \text{V}$, following the flipped the blue line (with gain) but with a slight delay. However, it will only deviate slightly at the zigzag. The time constant τ is longer than the gap in the zigzag. Finally, from $+8.8 \, \text{ms}$ until end $\implies V_o = -10 \, \text{V}$.

- Does this circuit suffer from multiple transitions?
 [No]

Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant $RC = 222.5 \, \text{ms}$. We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” V_i briefly changes sign). assuming the input transitions are short compared to RC, then V_o will NOT suffer from multiple transitions.