This is a non-inverting amplifier with a gain of \(G = 1 + \frac{497}{1.35} = 369.1 \). With such a large gain, it will saturate when \(V_i = \pm 10 V/G = \pm 0.027 V \).

Times when \(|V_i| < 0.027 \), \(V \), are
\[
T_1 = \pm \frac{0.1-0.027}{5 V/100 \text{ms}} = \pm 1.460 \text{ ms}.
\]
\[
T_2 = \pm \frac{0.1+0.027}{5 V/100 \text{ms}} = \pm 2.540 \text{ ms}.
\]

Sketch \(V_o \).

1) From start to \(-2.540 \text{ ms} \), \(V_o = -10 V \)
2) From \(-2.540 \text{ ms} \) to \(-1.460 \text{ ms} \), \(V_o = \text{transitions from} -10 V \) to \(+10 V \)
3) From \(-1.460 \text{ ms} \) to \(0 \text{ ms} \), \(V_o = +10 V \)
4) From \(0 \text{ ms} \) to \(+1.460 \text{ ms} \), \(V_o = -10 V \)
5) From \(+1.460 \text{ ms} \) to \(+2.540 \text{ ms} \), \(V_o = \text{transitions from} -10 V \) to \(+10 V \)
6) From \(+2.540 \text{ ms} \) to end, \(V_o = +10 V \)

At what times does \(V_o \) reach \(\pm 10 V \)?

1) From start to \(-2.540 \text{ ms} \), \(V_o = -10 V \)
3) From \(-1.460 \text{ ms} \) to \(0 \text{ ms} \), \(V_o = +10 V \)
4) From \(0 \text{ ms} \) to \(+1.460 \text{ ms} \), \(V_o = -10 V \)
6) From \(+2.540 \text{ ms} \) to end, \(V_o = +10 V \)

Does this circuit suffer from multiple transitions?

Yes
• Sketch V_o.
• At what times does V_o reach $\pm 10\, V$?
• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as $5\, V/100\, ms$. Op amps are ideal)

Thresholds at $\pm \frac{1.66\, k\Omega}{508+1.66\, k\Omega} \times 10\, V = \pm 0.033\, V$.

Conditions:
1) If $V_i < V_+ \implies V_o = +10\, V$ and $V_+ = +0.033\, V$.
2) If $V_i > V_+ \implies V_o = -10\, V$ and $V_+ = -0.033\, V$.

• Sketch V_o.
 1) Initially, $V_o = +10$ and $V_+ = +0.033\, V$
 2) when V_i crosses $+0.033\, V$, then $V_o = -10$ and $V_+ = -0.033\, V$
 3) when V_i crosses $-0.033\, V$, then $V_o = +10$ and $V_+ = +0.033\, V$
 4) when V_i crosses $+0.033\, V$, then $V_o = -10$ and $V_+ = -0.033\, V$

• At what times does V_o reach $\pm 10\, V$?
 Transitions at $\pm \frac{0.1-0.033}{5V/100\, ms} = \pm 1.34\, ms$.
 1) Beginning until $-1.34\, ms \implies V_o = +10\, V$.
 2) $-1.34\, ms$ until $0\, ms \implies V_o = -10\, V$.
 3) $0\, ms$ until $+2.66\, ms \implies V_o = +10\, V$.
 4) $+2.66\, ms$ until end $\implies V_o = -10\, V$.

• Does this circuit suffer from multiple transitions?
 Yes
This is a low pass filter with a gain of $G = \frac{562 \text{k}\Omega}{12.5 \text{k}\Omega} = -44.96$. With such a large gain, it will saturate when $V_i = \pm 10 \text{ V}$.

The time constant is $\tau = 562 \text{k}\Omega \times 406 \text{nF} = 228.2 \text{ ms}$.

- At what times does V_o reach $\pm 10 \text{ V}$?
 Transitions at $\pm 0.1 + 0.222 = \pm 6.4 \text{ ms}$.
 Thus: 1) Beginning until $-6.4 \text{ ms} \implies V_o = +10 \text{ V}$.
 2) $+6.4 \text{ ms}$ until end $\implies V_o = -10 \text{ V}$.

- Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)

Begining until $-6.4 \text{ ms} \implies V_o = +10 \text{ V}$. Then, from $+6.4 \text{ ms}$ until -6.4 ms the will go from $+10$ to -10 V, following the flipped the blue line (with gain) but with a slight delay. However, it will only deviate slightly at the zigzag. The time constant τ is longer than the gap in the zigzag. Finally, from $+6.4 \text{ ms}$ until end $\implies V_o = -10 \text{ V}$.

- Does this circuit suffer from multiple transitions?

[No]

Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant $RC = 228.2 \text{ ms}$. We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” V_i briefly changes sign). assuming the input transitions are short compared to RC, then V_o will NOT suffer from multiple transitions.