Question: A Student# 1713

1. Sketch V_o.

2. At what times does V_o reach ± 10 V?

3. Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

This is a non-inverting amplifier with a gain of $G = 1 + \frac{484}{156} = 311.3$. With such a large gain, it will saturate when $V_i = \pm 10 V/G = \pm 0.032$ V.

Times when $|V_i| < 0.032$, V, are

1. $T_1 = \pm \frac{0.1 - 0.032}{5 V/100 \text{ms}} = \pm 1.360$ ms.
2. $T_2 = \pm \frac{0.1 + 0.032}{5 V/100 \text{ms}} = \pm 2.640$ ms.

Sketch V_o.

1. From start to -2.640 ms, $V_o = -10$ V
2. From -2.640 ms to -1.360 ms, V_o transitions from -10 V to $+10$ V
3. From -1.360 ms to 0 ms, $V_o = +10$ V
4. From 0 ms to $+1.360$ ms, $V_o = -10$ V
5. From $+1.360$ ms to $+2.640$ ms, V_o transitions from -10 V to $+10$ V
6. From $+2.640$ ms to end, $V_o = +10$ V

At what times does V_o reach ± 10 V?

1. From start to -2.640 ms, $V_o = -10$ V
2. From -1.360 ms to 0 ms, $V_o = +10$ V
3. From 0 ms to $+1.360$ ms, $V_o = -10$ V
4. From $+1.360$ ms to $+2.640$ ms, $V_o = +10$ V

Does this circuit suffer from multiple transitions?

Yes
• Sketch V_o.

• At what times does V_o reach ± 10 V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

Thresholds at $\pm \frac{1.61 \text{k}\Omega}{393+1.61 \text{k}\Omega} \times 10 \text{ V} = \pm 0.041 \text{ V}$.

Conditions:
1) If $V_i < V_+ \implies V_o = +10 \text{ V}$ and $V_+ = +0.041 \text{ V}$.
2) If $V_i > V_+ \implies V_o = -10 \text{ V}$ and $V_+ = -0.041 \text{ V}$.

• Sketch V_o.
 1) Initially, $V_o = +10$ and $V_+ = +0.041$ V
 2) when V_i crosses $+0.041$ V, then $V_o = -10$ and $V_+ = -0.041$ V
 3) when V_i crosses -0.041 V, then $V_o = +10$ and $V_+ = +0.041$ V
 4) when V_i crosses $+0.041$ V, then $V_o = -10$ and $V_+ = -0.041$ V

• At what times does V_o reach ± 10 V?
 Transitions at $\pm \frac{0.1-0.041}{5V/100\text{ms}} = \pm 1.18 \text{ ms}$.
 1) Beginning until $-1.18 \text{ ms} \implies V_o = +10 \text{ V}$.
 2) -1.18 ms until $0 \text{ ms} \implies V_o = -10 \text{ V}$.
 3) 0 ms until $+2.82 \text{ ms} \implies V_o = +10 \text{ V}$.
 4) $+2.82 \text{ ms}$ until end $\implies V_o = -10 \text{ V}$.

• Does this circuit suffer from multiple transitions?
 Yes
- Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)

- At what times does V_o reach ± 10 V?

- Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

This is a low pass filter with a gain of $G = -\frac{387 \, k\Omega}{19.3 \, k\Omega} = -20.05$.
With such a large gain, it will saturate when $V_i = \pm 10$ V/$G = \pm 0.499$ V.
The time constant is $\tau = 387 \, k\Omega \times 467 \, nF = 180.7$ ms.

- At what times does V_o reach ± 10 V?
 Transitions at $\pm \frac{0.1 + 0.499}{5V/100\text{ms}} = \pm 12.0$ ms.
 Thus: 1) Begining until $-12.0 \text{ ms} \implies V_o = +10 \text{ V}$.
 2) $+12.0 \text{ ms}$ until end $\implies V_o = -10 \text{ V}$.

- Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)
 Begining until $-12.0 \text{ ms} \implies V_o = +10 \text{ V}$. Then, from $+12.0 \text{ ms}$ until -12.0 ms the will go from $+10$ to -10 V, following the flipped the blue line (with gain) but with a slight delay. However, it will only deviate slightly at the zigzag. The time constant τ is longer than the gap in the zigzag. Finally, from $+12.0 \text{ ms}$ until end $\implies V_o = -10 \text{ V}$.

- Does this circuit suffer from multiple transitions?
 [No]

Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant $RC = 180.7$ ms. We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” V_i briefly changes sign). assuming the input transitions are short compared to RC, then V_o will NOT suffer from multiple transitions.