• Sketch V_o.

• At what times does V_o reach $\pm 10 \text{ V}$?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

This is a non-inverting amplifier with a gain of $G = 1 + \frac{469}{1.15} = 408.8$. With such a large gain, it will saturate when $V_i = \pm 10 \text{ V}/G = \pm 0.024 \text{ V}$.

Times when $|V_i| < 0.024$, V, are

$T_1 = \pm \frac{0.1-0.024}{5\text{ V/100 ms}} = \pm 1.520 \text{ ms}$.

$T_2 = \pm \frac{0.1+0.024}{5\text{ V/100 ms}} = \pm 2.480 \text{ ms}$.

• Sketch V_o.

1) From start to -2.480 ms, $V_o = -10 \text{ V}$

2) From -2.480 ms to -1.520 ms, $V_o =$ transitions from -10 V to $+10 \text{ V}$

3) From -1.520 ms to 0 ms, $V_o = +10 \text{ V}$

4) From 0 ms to $+1.520 \text{ ms}$, $V_o = -10 \text{ V}$

5) From $+1.520 \text{ ms}$ to $+2.480 \text{ ms}$, $V_o =$ transitions from -10 V to $+10 \text{ V}$

6) From $+2.480 \text{ ms}$ to end, $V_o = +10 \text{ V}$

• At what times does V_o reach $\pm 10 \text{ V}$?

1) From start to -2.480 ms, $V_o = -10 \text{ V}$

3) From -1.520 ms to 0 ms, $V_o = +10 \text{ V}$

4) From 0 ms to $+1.520 \text{ ms}$, $V_o = -10 \text{ V}$

6) From $+2.480 \text{ ms}$ to end, $V_o = +10 \text{ V}$

• Does this circuit suffer from multiple transitions?

[Yes]
• Sketch V_o.

• At what times does V_o reach ± 10 V?

• Does this circuit suffer from multiple transitions?

(Notes: voltage axis not to scale. The slope of the voltage may be approximated as 5 V/100 ms. Op amps are ideal)

Thresholds at $\pm \frac{1.56 \text{kΩ}}{369+1.56 \text{kΩ}} \times 10 \text{V} = \pm 0.042 \text{V}$.

Conditions:
1) If $V_i < V_+ \implies V_o = +10 \text{V}$ and $V_+ = +0.042 \text{V}$.
2) If $V_i > V_+ \implies V_o = -10 \text{V}$ and $V_+ = -0.042 \text{V}$.

• Sketch V_o.
 1) Initially, $V_o = +10$ and $V_+ = +0.042 \text{V}$
 2) when V_i crosses $+0.042 \text{V}$, then $V_o = -10$ and $V_+ = -0.042 \text{V}$
 3) when V_i crosses -0.042V, then $V_o = +10$ and $V_+ = +0.042 \text{V}$
 4) when V_i crosses $+0.042 \text{V}$, then $V_o = -10$ and $V_+ = -0.042 \text{V}$

• At what times does V_o reach ± 10 V?
 Transitions at $\pm \frac{0.1-0.042}{5 \text{V}/100 \text{ms}} = \pm 1.16 \text{ms}$.
 1) Beginning until $-1.16 \text{ms} \implies V_o = +10 \text{V}$.
 2) -1.16ms until $0 \text{ms} \implies V_o = -10 \text{V}$.
 3) 0ms until $+2.84 \text{ms} \implies V_o = +10 \text{V}$.
 4) $+2.84 \text{ms}$ until end $\implies V_o = -10 \text{V}$.

• Does this circuit suffer from multiple transitions?
 Yes
This is a low pass filter with a gain of $G = -\frac{401\,\text{k}\Omega}{12.0\,\text{k}\Omega} = -33.42$.
With such a large gain, it will saturate when $V_i = \pm 10\,\text{V}/G = \pm 0.299\,\text{V}$.
The time constant is $\tau = 401\,\text{k}\Omega \times 346\,\text{nF} = 138.7\,\text{ms}$.

- At what times does V_o reach $\pm 10\,\text{V}$?
 Transitions at $\pm \frac{0.1+0.299}{5\,\text{V}/100\,\text{ms}} = \pm 8.0\,\text{ms}$.
 Thus: 1) Beginning until $-8.0\,\text{ms} \implies V_o = +10\,\text{V}$.
 2) $+8.0\,\text{ms}$ until end $\implies V_o = -10\,\text{V}$.

- Sketch V_o (this is difficult because of the exponential – indicate the main features of the curve)
 Begin until $-8.0\,\text{ms} \implies V_o = +10\,\text{V}$. Then, from $+8.0\,\text{ms}$ until $-8.0\,\text{ms}$ the will go from $+10\,\text{V}$ to $-10\,\text{V}$, following the flipped the blue line (with gain) but with a slight delay. However, it will only deviate slightly at the zigzag. The time constant τ is longer than the gap in the zigzag. Finally, from $+8.0\,\text{ms}$ until end $\implies V_o = -10\,\text{V}$.

- Does this circuit suffer from multiple transitions?
 [No]

Explanation: In the above case, the response is linear throughout the +/-0.1V transition of the input signal. The addition of the capacitor turns the circuit into a “lossy integrator”. Its step response would be an exponential with time constant $RC = 138.7\,\text{ms}$. We don’t have exactly a step at the input; however, if the input transitions are short compared to the time constant we can approximate the output as an exponential (perhaps with a “bump” V_i briefly changes sign). Assuming the input transitions are short compared to RC, then V_o will NOT suffer from multiple transitions.