- Sketch the filter requirements for a filter which must keep all frequencies < 29 kHz (to within ±5%) and reject all frequencies above 65 kHz by at least 60 dB.
- Using a table, design the filter, and for each 2nd-order stage in the filter, calculate ω_c and ζ.

First, convert 5% to dB

$$20\log_{10}(1.05) = 0.42, \quad 20\log_{10}(1.05) = -0.45$$

In table, choose FILTER = Chebychev 0.2 dB

Next, calculate $F_s = f_s/f_p = 65/29 = 2.24$

- Design of stage #1:
 $\omega_c = 29 \times 0.343 = 9.95$ kHz
 Gain = $3 - 2\zeta = 3 - 2 \times 0.807 = 1.39$

- Design of stage #2:
 $\omega_c = 29 \times 0.623 = 18.07$ kHz
 Gain = $3 - 2\zeta = 3 - 2 \times 0.377 = 2.25$

- Design of stage #3:
 $\omega_c = 29 \times 0.878 = 25.46$ kHz
 Gain = $3 - 2\zeta = 3 - 2 \times 0.179 = 2.64$

- Design of stage #4:
 $\omega_c = 29 \times 1.021 = 29.61$ kHz
 Gain = $3 - 2\zeta = 3 - 2 \times 0.054 = 2.89$
• Design a 2nd-order RLC low-pass filter, with \(f_c = 29 \text{ kHz} \) and \(\zeta = 0.9 \). Use \(C = 10 \text{ nF} \).

Natural frequency: \(\omega_c = 2\pi f_c = 2\pi (29 \text{ kHz}) = 182212 \text{ rad/s} \)

\[
\omega_c = \frac{1}{\sqrt{LC}}, \quad \rightarrow \quad L = \frac{1}{\omega^2 \times C} = 3.01 \text{ mH}.
\]

\[
\zeta = \frac{R}{2 \sqrt{C/L}}, \quad \rightarrow \quad R = 2\zeta \sqrt{\frac{L}{C}} = 988 \Omega
\]
• Design a 2nd-order Salen-Key high-pass filter, with \(f_c = 2 \text{ kHz} \) and \(\zeta = 0.6 \). Use \(C = 10 \text{ nF} \) and \(R_2 = 10 \text{ k}\Omega \).

Select cut-off frequency:

\[
\omega_c = 2\pi f_c = 2\pi (2 \text{ kHz}) = 12566 \text{ rad/s}
\]

\[
\omega_c = \frac{1}{RC}, \quad \Rightarrow \quad R = \frac{1}{C \times \omega_c} = \frac{1}{12566 \times 10 \text{ nF}} = 7.96 \text{ k}\Omega
\]

Select Gain:

\[
2\zeta = 3 - G
\]

\[
G = 3 - 2\zeta = 3 - 2 \times 0.6 = 1.80
\]

\[
G = 1 + \frac{R_1}{R_2}, \quad \Rightarrow \quad R_1 = R_2 \times (G - 1), \quad \Rightarrow \quad 8.00 \text{ k}\Omega
\]