• Sketch the filter requirements for a filter which must keep all frequencies < 25 kHz (to within ±5%) and reject all frequencies above 64 kHz by at least 60 dB.

• Using a table, design the filter, and for each 2nd-order stage in the filter, calculate \(\omega_c \) and \(\zeta \).

First, convert 5% to dB

\[
20 \log_{10}(1.05) = 0.42, \quad 20 \log_{10}(1.05) = -0.45
\]

In table, choose FILTER = Chebychev 0.2dB

Next, calculate \(F_s = f_s/f_p = 64/25 = 2.56 \)

• Design of stage #1:
 \(\omega_c = 25 \times 0.46 = 11.50 \) kHz
 \[\text{Gain} = 3 - 2\zeta = 3 - 2 \times 0.799 = 1.40 \]

• Design of stage #2:
 \(\omega_c = 25 \times 0.803 = 20.07 \) kHz
 \[\text{Gain} = 3 - 2\zeta = 3 - 2 \times 0.335 = 2.33 \]

• Design of stage #3:
 \(\omega_c = 25 \times 1.038 = 25.95 \) kHz
 \[\text{Gain} = 3 - 2\zeta = 3 - 2 \times 0.095 = 2.81 \]
• Design a 2nd-order RLC low-pass filter, with \(f_c = 25 \text{ kHz} \) and \(\zeta = 1.0 \). Use \(C = 10 \text{ nF} \).

Natural frequency: \(\omega_c = 2\pi f_c = 2\pi (25 \text{ kHz}) = 157080 \text{ rad/s} \)

\[
\omega_c = \frac{1}{\sqrt{LC}}, \quad \Rightarrow \quad L = \frac{1}{\omega^2 \times C} = 4.05 \text{ mH}.
\]

\[\zeta = \frac{R}{2 \sqrt{C/L}}, \quad \Rightarrow \quad R = 2\zeta \sqrt{\frac{L}{C}} = 1273 \Omega\]
- Design a 2nd-order Salen-Key high-pass filter, with $f_c = 3$ kHz and $\zeta = 0.6$. Use $C = 10 \text{nF}$ and $R_2 = 10 \text{k}\Omega$.

- Select cut-off frequency: $\omega_c = 2\pi f_c = 2\pi (3 \text{ kHz}) = 18850 \text{ rad/s}$

$$\omega_c = \frac{1}{RC}, \quad \Rightarrow \quad R = \frac{1}{C \times \omega_c} = \frac{1}{18850 \times 10 \text{nF}} = 5.31 \text{k}\Omega$$

- Select Gain: $2\zeta = 3 - G$

$G = 3 - 2\zeta = 3 - 2 \times 0.6 = 1.80$

$$G = 1 + \frac{R_1}{R_2}, \quad \Rightarrow \quad R_1 = R_2 \times (G - 1), \quad \Rightarrow \quad 8.00 \text{k}\Omega$$

- Diagram of the 2nd-order Salen-Key high-pass filter with the specified components.