For the circuit above, $V_i = 10 \text{ mV}$:

- What is V_o if the amplifier is ideal?
- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
- What is V_o if the bias current, $I_B = 10 \text{ nA}$?

- What is V_o if the amplifier is ideal?
 Represent ideal as \bar{V}_o

\[
V_+ = \frac{30 \text{ k}\Omega}{30 + 2.0 \text{ k}\Omega} V_i = (9.380 \text{ mV}), \quad \bar{V}_o = \left(1 + \frac{30 \text{ k}\Omega}{2.0 \text{ k}\Omega}\right) V_+ = 16.000 V_+ = 150.080 \text{ mV}
\]

- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
 Use superposition to get (V_o') then add to ideal V_{OS}:

\[
V_o' = \left(1 + \frac{30 \text{ k}\Omega}{2.0 \text{ k}\Omega}\right) V_{OS} = 16.000 \times V_{OS} = 0.160 \text{ mV}
\]

\[
V_o = \bar{V}_o + V_o' = 150.240 \text{ mV}
\]

- What is V_o if the bias current, $I_B = 10 \text{ nA}$?
 First, use superposition to get (V_o'') for I_B into V_+. Current travels through parallel resistors.

\[
V_o'' = -\left(1 + \frac{30 \text{ k}\Omega}{2.0 \text{ k}\Omega}\right) (R_1 \parallel R_2) I_B = -16.000 \times 1.875 \text{k}\Omega \times I_B = -0.300 \text{ mV}
\]

Next, use superposition to get (V_o''') for I_B into V_-. Current through R_1, since FB keeps V_- at ground. Note that this resistor configuration cancels I_B.

\[
V_o''' = (30 \text{ k}\Omega) I_B = 0.300 \text{ mV}
\]

\[
V_o = \bar{V}_o + V_o' + V_o''' = 150.080 \text{ mV}
\]
The op amp is ideal, except \(f_T (= \text{Gain-Bandwidth}) \) is 120 kHz.

For the circuit above, \(V_i = (20 \text{ mV}) \cos(2\pi ft) \):

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 3 \text{ kHz} \)?
- What is the peak-to-peak amplitude of \(V_o \) if \(f = 30 \text{ kHz} \)?

First, analyse ideal gain, \(V_\text{o} \)

\[
V_+ = \frac{21 \text{ k}\Omega}{21 + 2.5 \text{ k}\Omega} V_i = 0.894 V_i \quad V_\text{o} = \left(1 + \frac{21 \text{ k}\Omega}{2.5 \text{ k}\Omega}\right) V_+ = 9.400 V_+ = 8.404 V_i
\]

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 3 \text{ kHz} \)?
 Given Gain-Bandwidth, maximum possible gain is \(G = (G \cdot BW)/f = 120/3 = 40 \).
 We specify a gain of 8.404 which is less than 40, so we get the specified gain.
 \(V_o = 8.404 \times (20 \text{ mV}) \cos(2\pi ft) \), and peak-peak voltage is \(2 \times max(V_o) \).
 Answer: 336.2 mV.

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 30 \text{ kHz} \)?
 Given Gain-Bandwidth, maximum possible gain is \(G = (G \cdot BW)/f = 120/30 = 4 \).
 We specify a gain of 8.404 which is greater than 4, so we only get a gain of 4.
 \(V_o = 4 \times (20 \text{ mV}) \cos(2\pi ft) \), and peak-peak voltage is \(2 \times max(V_o) \).
 Answer: 160.0 mV.
For the circuit above:

- **What type of filter is this?** (high pass, low pass, band pass, band stop)

 This is a low pass filter

- What is the cut-off frequency (f_c) and damping constant (ζ)?

 \[
 \omega_c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{8.9\,\text{mH} \cdot 12.5\,\text{\mu F}}} = 2998.127 \text{ rad/s}, \quad f_c = 2\pi\omega_c = 18837.393 \text{ Hz}
 \]

 and,

 \[
 \zeta = \frac{R}{2\sqrt{C/L}} = \frac{209\,\text{k}\Omega}{2} \sqrt{\frac{12.5\,\text{\mu F}}{8.9\,\text{mH}}} = 3.916
 \]

- Sketch the amplitude of $\frac{V_o}{V_i}$ as a function of frequency. Label the passband, stopband and roll-off rate.

 $\frac{V_o}{V_i}$ starts near 1.0. After f_c, graph decreases at 40 dB/decade.