For the circuit above, $V_i = 10 \text{ mV}$:

- What is V_o if the amplifier is ideal?
- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
- What is V_o if the bias current, $I_B = 10 \text{ nA}$?

- What is V_o if the amplifier is ideal?

 Represent ideal as \bar{V}_o

 $$V_+ = \frac{29 \text{ k}\Omega}{29 + 2.0 \text{ k}\Omega} V_i = (9.350 \text{ mV}), \quad \bar{V}_o = \left(1 + \frac{29 \text{ k}\Omega}{2.0 \text{ k}\Omega}\right) V_+ = 15.500 V_+ = 144.925 \text{ mV}$$

- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?

 Use superposition to get (V_o') then add to ideal V_{OS}:

 $$V_o' = \left(1 + \frac{29 \text{ k}\Omega}{2.0 \text{ k}\Omega}\right) V_{OS} = 15.500 \times V_{OS} = 0.155 \text{ mV}$$

 $$V_o = \bar{V}_o + V_o' = 145.080 \text{ mV}$$

- What is V_o if the bias current, $I_B = 10 \text{ nA}$?

 First, use superposition to get (V_o'') for I_B into V_+. Current travels through parallel resistors.

 $$V_o'' = -\left(1 + \frac{29 \text{ k}\Omega}{2.0 \text{ k}\Omega}\right) (R_1 \parallel R_2) I_B = -15.500 \times 1.871 \text{ k}\Omega \times I_B = -0.290 \text{ mV}$$

 Next, use superposition to get (V_o''') for I_B into V_-. Current through R_1, since FB keeps V_- at ground. Note that this resistor configuration cancels I_B.

 $$V_o'' = (29 \text{ k}\Omega) I_B = 0.290 \text{ mV}$$

 $$V_o = \bar{V}_o + V_o' + V_o''' = 144.925 \text{ mV}$$
The op amp is ideal, except f_T (Gain-Bandwidth) is 120 kHz.

\[V_+ = \frac{20 \text{k}\Omega}{20 + 3.1 \text{k}\Omega} V_i = 0.866 V_i \quad \bar{V}_o = \left(1 + \frac{20 \text{k}\Omega}{3.1 \text{k}\Omega}\right) V_+ = 7.452 V_+ = 6.453 V_i \]

- What is the peak-to-peak amplitude of V_o if $f = 3 \text{ kHz}$?

 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW)/f = 120/3 = 40$. We specify a gain of 6.453 which is less than 40, so we get the specified gain. $V_o = 6.453 \times (20 \text{ mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times \max(V_o)$. Answer: 258.1 mV.

- What is the peak-to-peak amplitude of V_o if $f = 30 \text{ kHz}$?

 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW)/f = 120/30 = 4$. We specify a gain of 6.453 which is greater than 4, so we only get a gain of 4. $V_o = 4 \times (20 \text{ mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times \max(V_o)$. Answer: 160.0 mV.
For the circuit above:

- **What type of filter is this?** (high pass, low pass, band pass, band stop)

 This is a low pass filter

- What is the cut-off frequency \((f_c) \) and damping constant \((\zeta) \)?

 \[
 \omega_c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{8.3 \text{ mH} \cdot 15.7 \mu\text{F}}} = 2770.200 \text{ rad/s}, \quad f_c = 2\pi\omega_c = 17405.316 \text{ Hz}
 \]

 and,

 \[
 \zeta = \frac{R}{2\sqrt{C/L}} = \frac{204 \text{ k}\Omega}{2\sqrt{\frac{15.7 \mu\text{F}}{8.3 \text{ mH}}}} = 4.436
 \]

- Sketch the amplitude of \(\frac{V_o}{V_i} \) as a function of frequency. Label the passband, stopband and roll-off rate.

 \(\frac{V_o}{V_i} \) starts near 1.0. After \(f_c \), graph decreases at 40 dB/decade.