For the circuit above, $V_i = 10 \text{ mV}$:

- What is V_o if the amplifier is ideal?
- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
- What is V_o if the bias current, $I_B = 10 \text{nA}$?

- What is V_o if the amplifier is ideal?
 Represent ideal as \bar{V}_o

 \[
 V_+ = \frac{23 \text{k}\Omega}{23 + 1.0 \text{k}\Omega} V_i = (9.580 \text{ mV}), \quad \bar{V}_o = \left(1 + \frac{23 \text{k}\Omega}{1.0 \text{k}\Omega}\right) V_+ = 24.000 \text{ V}_+ = 229.920 \text{ mV}
 \]

- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
 Use superposition to get (V'_o) then add to ideal V_{OS}:

 \[
 V'_o = \left(1 + \frac{23 \text{k}\Omega}{1.0 \text{k}\Omega}\right) V_{OS} = 24.000 \times V_{OS} = 0.240 \text{ mV}
 \]

 \[
 V_o = \bar{V}_o + V'_o = 230.160 \text{ mV}
 \]

- What is V_o if the bias current, $I_B = 10 \text{nA}$?
 First, use superposition to get (V''_o) for I_B into V_+. Current travels through parallel resistors.

 \[
 V'_o = -\left(1 + \frac{23 \text{k}\Omega}{1.0 \text{k}\Omega}\right) (R_1 \parallel R_2) I_B = -24.000 \times 0.958 \text{k}\Omega \times I_B = -0.230 \text{ mV}
 \]

 Next, use superposition to get (V''_o) for I_B into V_-. Current through R_1, since FB keeps V_- at ground. Note that this resistor configuration cancels I_B.

 \[
 V''_o = (23 \text{k}\Omega) I_B = 0.230 \text{ mV}
 \]

 \[
 V_o = \bar{V}_o + V'_o + V''_o = 229.920 \text{ mV}
 \]
The op amp is ideal, except $f_T (= \text{Gain-Bandwidth})$ is 120 kHz.

For the circuit above, $V_i = (20 \text{ mV}) \cos(2\pi ft)$:

- What is the peak-to-peak amplitude of V_o if $f = 3 \text{ kHz}$?
- What is the peak-to-peak amplitude of V_o if $f = 30 \text{ kHz}$?

First, analyse ideal gain, $\bar{V_o}$

$$V_+ = \frac{27 \text{ k}\Omega}{27 + 3.6 \text{ k}\Omega} V_i = 0.882 V_i \quad \bar{V_o} = \left(1 + \frac{27 \text{ k}\Omega}{3.6 \text{ k}\Omega}\right) V_+ = 8.500 V_+ = 7.497 V_i$$

- What is the peak-to-peak amplitude of V_o if $f = 3 \text{ kHz}$?

 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW)/f = 120/3 = 40$.

 We specify a gain of 7.497 which is less than 40, so we get the specified gain.

 $V_o = 7.497 \times (20 \text{ mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times \max(V_o)$.

 Answer: 299.9 mV.

- What is the peak-to-peak amplitude of V_o if $f = 30 \text{ kHz}$?

 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW)/f = 120/30 = 4$.

 We specify a gain of 7.497 which is greater than 4, so we only get a gain of 4.

 $V_o = 4 \times (20 \text{ mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times \max(V_o)$.

 Answer: 160.0 mV.
For the circuit above:

- **What type of filter is this?** (high pass, low pass, band pass, band stop)

- Sketch the amplitude of V_o/V_i as a function of frequency. Label the passband, stopband and roll-off rate.

- What is the cut-off frequency (f_c) and damping constant (ζ)?

- **What type of filter is this?** (high pass, low pass, band pass, band stop)

 This is a low pass filter

- What is the cut-off frequency (f_c) and damping constant (ζ)?

 $$\omega_c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5.6 \text{ mH} \cdot 17.9 \text{ } \mu F}} = 3158.490 \text{ rad/s}, \quad f_c = 2\pi \omega_c = 19844.963 \text{ Hz}$$

 and,

 $$\zeta = \frac{R}{2 \sqrt{C/L}} = \frac{269 \text{ k}\Omega}{2 \sqrt{\frac{17.9 \text{ } \mu F}{5.6 \text{ mH}}}} = 7.604$$

- Sketch the amplitude of V_o/V_i as a function of frequency. Label the passband, stopband and roll-off rate.

 V_o/V_i starts near 1.0. After f_c, graph decreases at 40 dB/decade.