For the circuit above, $V_i = 10 \text{ mV}$:

- What is V_o if the amplifier is ideal?
- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
- What is V_o if the bias current, $I_B = 10 \text{nA}$?

- What is V_o if the amplifier is ideal?
 Represent ideal as \bar{V}_o

 $$V_+ = \frac{21 \text{k} \Omega}{21 + 1.9 \text{k} \Omega} V_i = (9.170 \text{ mV}, \quad \bar{V}_o = \left(1 + \frac{21 \text{k} \Omega}{1.9 \text{k} \Omega} \right) V_+ = 12.053 V_+ = 110.526 \text{ mV}$$

- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
 Use superposition to get (V_o') then add to ideal V_{OS}:

 $$V_o' = \left(1 + \frac{21 \text{k} \Omega}{1.9 \text{k} \Omega} \right) V_{OS} = 12.053 \times V_{OS} = 0.121 \text{ mV}$$

 $$V_o = \bar{V}_o + V_o' = 110.647 \text{ mV}$$

- What is V_o if the bias current, $I_B = 10 \text{nA}$?
 First, use superposition to get (V_o') for I_B into V_+. Current travels through parallel resistors.

 $$V_o' = - \left(1 + \frac{21 \text{k} \Omega}{1.9 \text{k} \Omega} \right) (R_1 \parallel R_2) I_B = -12.053 \times 1.742 \text{k} \Omega \times I_B = -0.210 \text{ mV}$$

 Next, use superposition to get (V_o'') for I_B into V_-. Current through R_1, since FB keeps V_- at ground. Note that this resistor configuration cancels I_B.

 $$V_o'' = (21 \text{k} \Omega) I_B = 0.210 \text{ mV}$$

 $$V_o = \bar{V}_o + V_o' + V_o'' = 110.526 \text{ mV}$$
The op amp is ideal, except \(f_T (= \text{Gain-Bandwidth}) \) is 120 kHz.

\[
\begin{align*}
&3.8 \, \text{k}\Omega \\
&\triangleleft \\
&\triangle > \end{align*}
\]

For the circuit above, \(V_i = (20 \, \text{mV}) \cos(2\pi ft) \):

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 3 \, \text{kHz} \)?
- What is the peak-to-peak amplitude of \(V_o \) if \(f = 30 \, \text{kHz} \)?

First, analyse ideal gain, \(\bar{V}_o \)

\[
V_+ = \frac{25 \, \text{k}\Omega}{25 + 3.8 \, \text{k}\Omega} V_i = 0.868 V_i \quad \bar{V}_o = \left(1 + \frac{25 \, \text{k}\Omega}{3.8 \, \text{k}\Omega}\right) V_+ = 7.579 V_+ = 6.579 V_i
\]

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 3 \, \text{kHz} \)?
 Given Gain-Bandwidth, maximum possible gain is \(G = (G \cdot BW)/f = 120/3 = 40 \).
 We specify a gain of 6.579 which is less than 40, so we get the specified gain.
 \(V_o = 6.579 \times (20 \, \text{mV}) \cos(2\pi ft) \), and peak-peak voltage is \(2 \times max(V_o) \).
 Answer: 263.2 mV.

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 30 \, \text{kHz} \)?
 Given Gain-Bandwidth, maximum possible gain is \(G = (G \cdot BW)/f = 120/30 = 4 \).
 We specify a gain of 6.579 which is greater than 4, so we only get a gain of 4.
 \(V_o = 4 \times (20 \, \text{mV}) \cos(2\pi ft) \), and peak-peak voltage is \(2 \times max(V_o) \).
 Answer: 160.0 mV.
For the circuit above:

- **What type of filter is this?** (high pass, low pass, band pass, band stop)
 - This is a low pass filter

- What is the cut-off frequency (f_c) and damping constant (ζ)?

 \[\omega_c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{4.6 \text{ mH} \cdot 18.9 \mu \text{F}}} = 3391.487 \text{ rad/s}, \quad f_c = 2\pi \omega_c = 21308.895 \text{ Hz} \]

 and,

 \[\zeta = \frac{R}{2} \sqrt{\frac{C}{L}} = \frac{248 \text{ k}\Omega}{2} \sqrt{\frac{18.9 \mu \text{F}}{4.6 \text{ mH}}} = 7.948 \]

- Sketch the amplitude of $\frac{V_o}{V_i}$ as a function of frequency. Label the passband, stopband and roll-off rate.

 $\frac{V_o}{V_i}$ starts near 1.0. After f_c, graph decreases at 40 dB/decade.