For the circuit above, $V_i = 10 \text{ mV}$:

- What is V_o if the amplifier is ideal?
- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
- What is V_o if the bias current, $I_B = 10 \text{ nA}$?

- What is V_o if the amplifier is ideal?

 Represent ideal as \bar{V}_o

 \[
 V_+ = \frac{22 \text{k} \Omega}{22 + 2.8 \text{k} \Omega} V_i = (8.870 \text{ mV}), \quad \bar{V}_o = \left(1 + \frac{22 \text{k} \Omega}{2.8 \text{k} \Omega}\right) V_+ = 8.857 V_+ = 78.562 \text{ mV}
 \]

- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?

 Use superposition to get (V_o') then add to ideal V_{OS}:

 \[
 V_o' = \left(1 + \frac{22 \text{k} \Omega}{2.8 \text{k} \Omega}\right) V_{OS} = 8.857 \times V_{OS} = 0.089 \text{ mV}
 \]

 \[
 V_o = \bar{V}_o + V_o' = 78.651 \text{ mV}
 \]

- What is V_o if the bias current, $I_B = 10 \text{ nA}$?

 First, use superposition to get (V_o') for I_B into V_+. Current travels through parallel resistors.

 \[
 V_o' = - \left(1 + \frac{22 \text{k} \Omega}{2.8 \text{k} \Omega}\right) (R_1 \parallel R_2) I_B = -8.857 \times 2.484 \text{k} \Omega \times I_B = -0.220 \text{ mV}
 \]

 Next, use superposition to get (V_o'') for I_B into V_-. Current through R_1, since FB keeps V_- at ground. Note that this resistor configuration cancels I_B.

 \[
 V_o'' = (22 \text{k} \Omega) I_B = 0.220 \text{ mV}
 \]

 \[
 V_o = \bar{V}_o + V_o' + V_o'' = 78.562 \text{ mV}
 \]
The op amp is ideal, except $f_T (=\text{Gain\text{-}Bandwidth})$ is 120 kHz.

For the circuit above, $V_i = (20 \text{ mV}) \cos(2\pi ft)$:

- What is the peak-to-peak amplitude of V_o if $f = 3 \text{ kHz}$?
- What is the peak-to-peak amplitude of V_o if $f = 30 \text{ kHz}$?

First, analyse ideal gain, \bar{V}_o

\[
V_+ = \frac{25 \text{ k}\Omega}{25 + 3.9 \text{ k}\Omega} V_i = 0.865 V_i \quad \bar{V}_o = \left(1 + \frac{25 \text{ k}\Omega}{3.9 \text{ k}\Omega}\right) V_+ = 7.410 V_+ = 6.410 V_i
\]

- What is the peak-to-peak amplitude of V_o if $f = 3 \text{ kHz}$?
 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW)/f = 120/3 = 40$.
 We specify a gain of 6.410 which is less than 40, so we get the specified gain.
 $V_o = 6.410 \times (20 \text{ mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times max(V_o)$.
 Answer: 256.4 mV.

- What is the peak-to-peak amplitude of V_o if $f = 30 \text{ kHz}$?
 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW)/f = 120/30 = 4$.
 We specify a gain of 6.410 which is greater than 4, so we only get a gain of 4.
 $V_o = 4 \times (20 \text{ mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times max(V_o)$.
 Answer: 160.0 mV.
For the circuit above:

- **What type of filter is this?** (high pass, low pass, band pass, band stop)
 - This is a low pass filter

- What is the cut-off frequency \(f_c \) and damping constant \(\zeta \)?
 \[
 \omega_c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{4.9 \, \text{mH} \cdot 19.4 \, \mu\text{F}}} = 3243.404 \, \text{rad/s}, \quad f_c = 2\pi \omega_c = 20378.482 \, \text{Hz}
 \]
 and,
 \[
 \zeta = \frac{R}{2} \sqrt{\frac{C}{L}} = \frac{248 \, \text{k}\Omega}{2} \sqrt{\frac{19.4 \, \mu\text{F}}{4.9 \, \text{mH}}} = 7.802
 \]

- Sketch the amplitude of \(\frac{V_o}{V_i} \) as a function of frequency. Label the passband, stopband and roll-off rate.
 \(\frac{V_o}{V_i} \) starts near 1.0. After \(f_c \), graph decreases at 40 dB/decade.